GreenThumb

Automated Gardening Solution

James Dawson Surya Nehra Bryan Thiha

Agenda

- Product Introduction
 - Problem Statement
 - GreenThumb Design
- Hardware
 - Block Diagram
 - Inputs and Outputs
 - Sensors
 - Outputs
- Software
 - Program Discussion
 - Component Communication
 - Use of Interrupts
- Cost Estimate
- Q&A

Product Introduction

Problem Statement

- **Problem:** Gardening has barriers to entry
 - Experience/knowledge of plant needs
 - Consistency of care

- **Solution:** An automated system that handles the daily minutia of garden maintenance
 - Sensors to monitor plant status
 - Outputs to affect plant status

Hardware

Block Diagrams

-

Block Diagram: SmartPot

15

Connection Legend

- Analog Input
- Digital Output
 - SPI

Block Diagram: Main Controller

Inputs and Outputs

PinOut: SmartPot

Connection Legend

- Ground

- Power
- Moisture Sensor
- Light Sensor
- Wireless Link
- Pump Controller
- Canopy Motor
- Light Output

PinOut: Main Controller

Connection Legend

- Ground
- Power
- LCD
- Buttons
- Wireless Link

Moisture Sensor

Seeed Studio Capacitive Moisture Sensor

- Corrosion resistant
- Analog output will be read and used for determining when to water plant

Light Energy Sensor

5V Solar Cell

- Read output voltage generated by cell
 - Treat as an analog input
 - Calculate energy being produced
- Use energy value to determine when to open canopy/provide additional light via LEDs

Outputs

Water Pump

3V DC Submersible Pump

- Activates when moisture reading falls below threshold
- Pumps fixed volume of water from inpot reservoir
- 100 mA draw
 - Needs transistor-diode switching

Canopy Motor

6-12V DC Motor

- Activates when measurement of total received light energy exceeds threshold
- Motor will pull on a pulley to expand and retract canopy
- 1 A draw
 - Transistor-diode switching

LED Grow Lights

3W White LED Chips

- Activates when light energy requirement has not been met after a specified time
- Artificially supplements plant light requirements
- 300 mA draw for each light
 - Buck converter in conjunction with transistor-diode switching

LCD Screen

16x2 LCD Screen

- Used in initializing pots and displaying status updates to user on the main controller
- Connected to main controller using I2C protocol
- 5V power, can draw from microcontroller directly

Wireless Transceiver

NRF24L01 RF Transceiver

- 100+ meter range, duplex communication, 125 selectable frequencies
- Used in SmartPots and main controller to exchange information via SPI
- Interrupt can wake device from sleep when communication is received

Powering the Devices

18650 Li-Ion Batteries

- Rechargeable, 3.7 V, 2600 mAh cells
- 3 or 4 will be used in both the SmartPots and the main controller

Software

SmartPot:

How the program will work

- Implement a Watchdog Timer for 15 minutes to have chip on sleep mode until Watchdog interrupt occurs
- Then perform reading of sensors, call respective functions to perform actions depending on the values obtained
- Will use a BAUD rate of 9600 for sending and receiving serial data
- Will also use built in battery level detector to determine how much power left in device

SmartPot:

Component Communication

- Read analog measurements from moisture and light sensors using ADC pins (PC1 & PC2)
- Perform analog to digital conversions
- If moisture value readings fall below a certain threshold, will send digital output signal to water pump
- Depending on light energy sensor readings, will send digital signal to canopy motor to deploy or LED lights to turn on additional light

Main Controller:

How the program will work

- The program will have an infinite loop to read inputs from button presses and output to the LCD screen
- Interrupts will be enabled in the case of receiving information from the SmartPot

Main Controller:

Component Communication

- Will read in data from button inputs (up, down, select etc) and update LCD screen
- By reading the values of the respective pins at the button inputs, will output to LCD through the I2C protocol

Interrupts

- SmartPot Interrupt
 - Generate ISR to instantiate SmartPot from main controller → wake Pot from sleep mode to implement changes
- Main Controller Interrupts
 - If SmartPot detects a really low moisture (determined by threshold) for 3 cycles → notify MC of empty water tank
 - If SmartPot detects low light for more than 3 cycles → notify MC of possible bulb fuse
 - If SmartPot detects too much light for more than 3 cycles → notify MC of possible canopy deployment failure

MC = main controller

Cost Estimate

Main Controller

 ~\$32 in components (LCD, microcontroller, transceiver, batteries)

SmartPot

 ~\$55 in components (sensors, output devices, microcontroller, transceiver, batteries)

