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1 Introduction

Many common magnetic resonance imaging sequences
are classified either as spin echo or gradient echo tech-
niques. Generally, a gradient echo occurs when spins are
coherent regardless of their position within the sample.
This occurs whenever the net gradient area since a pre-
vious echo is zero. In a spin echo, spins are coherent
regardless of their resonance frequency [1]. Here we will
focus on gradient echoes in more detail, including how
they evolve, and the so-called gradient-echo pulse se-
quences. These include gradient spoiled sequences, RF-
spoiled sequences and balanced steady-state free pre-
cession (SSFP) sequences.

1.1 General Rapid Gradient Echo Sequences

Rapid gradient echo sequences consist of a single radio
frequency (RF) excitation, imaging gradients and acqui-
sition, and spoiler gradients. Figure 1 shows a basic ex-
ample of the RF and spoiling gradients. The RF pulse
has some flip angle α and some phase angle, φ. For
simplicity, we omit imaging and slice-select gradients, and
assume that the spoiler gradients are along only one axis.
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Figure 1: Gradient echo sequences generally consist of re-
peated RF pulses, and some type of spoiling gradients. The
RF flip angle (α) is usually constant, while the phase angle (φ)
can be constant, or can increment linearly or quadratically with
the repetition number. Spoiling gradients usually occur at the
end of the repetition (solid lines), but may also occur at the be-
ginning (dotted lines), or not at all. Three time points of interest,
numbered 1-3, are used in analyzing the signal levels.

Four basic gradient-echo sequences can be derived
from Fig. 1. Balanced SSFP (steady state free preces-
sion) sequences have no spoiler gradients. Gradient-
spoiled sequences have a spoiler at the end of the rep-
etition (Fig. 1, solid gradient.). Reversed gradient-spoiled
sequences have a spoiler gradient immediately after the
RF pulse, before imaging. (Fig. 1, dotted line). Finally,
RF-spoiled sequences use a gradient spoiler at the end
of the repetition and an additional quadratic phase incre-
ment for φ. By first examining the dynamics of balanced
SSFP, we can build up the other three sequences.

1.2 Spin Dynamics

The dynamics of spins in an MRI system with radio fre-
quency (RF) and gradient coils are accurately described
by the Bloch equation. Given RF and gradient waveforms,
as well as the resonance frequency, relaxation times and
position of a spin, the (3x1) magnetization vector can be
easily modeled using a matrix formalism [2], where an RF
pulse is represented by a series of rotation matrices about
an arbitrary axis in the transverse (Mx −My) plane. Pre-
cession, due to the resonance frequency as well as the
effect of gradients is also represented by a series of rota-
tion matrices about the longitudinal (z) axis. Relaxation is
represented as a matrix multiplication, with an addition of
a recovery term. Using a time step that is small compared
with the rate of any of these processes, these three ma-
trices can be applied sequentially and still provide a very
good model of the spin dynamics.

1.3 Magnetization Steady States

When the same sequence of RF rotations, precession and
relaxation is repeated, a steady state forms, where the
magnetization at some point in the sequence is the same
from one repetition to the next. There are three cases:

• TR > 2T1 and TR > 2T2. Here the magnetization
at the start of the sequence relaxes completely to the
equilibrium magnetization, M0. The “steady state” is
just the equilibrium magnetization.

• TR > 2T2 but TR < 2T1. Here all transverse mag-
netization will be zero at the start of the sequence.
However, the longitudinal magnetization reaches a
steady state.
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Figure 2: Magnetization dynamics in balanced SSFP. (a) and (b) show the path of magnetization in the Mx −Mz and Mx −My

planes, while (c) shows the signal (Mxy-magnetization) magnitude and phase as a function of resonance frequency. Colored lines
represent single resonance frequencies. The ×, ◦ and + symbols represent magnetization at time points 1, 2 and 3 in Fig. 1.
Immediately after the RF pulse, steady-state magnetization is distributed along an ellipse (× symbols and dotted black line in a,b).
Spins precession over TR (colored lines in b), aligning along theMy axis at TR/2 (◦ symbols). Immediately before the RF pulse,
magnetization is again distributed along an ellipse (+ symbols and dashed black line).

• TR < 2T1 and TR < 2T2. Both longitudinal and
transverse magnetization reach a non-zero steady
state.

We will concentrate on the third of these cases, which
applies to most rapid gradient echo sequences.

2 Balanced SSFP Dynamics

Balanced SSFP consists simply of RF pulses that are re-
peated every TR, with no spoiling gradients [3]. The dy-
namics of other rapid gradient echo sequences can be
derived from those of balanced SSFP. First we assume a
basic sequence with the following dynamics:

• RF rotation of an angle α about the y axis.
• Precession θ due to resonance frequency offset.
• T1 and T2 relaxation.

After numerous repetitions, the magnetization reaches
a steady state, that can be calculated analytically by prop-
agating the above dynamics through a sequence repeti-
tion [4–7]. However, it is important to try to intuitively un-
derstand the dynamics [8–10]. For moderately large α,
there are two cases of interest (shown in Fig. 2):

1. When the amount of precession is very small, (θ
close to 0◦), the magnetization mostly rotates around
the y axis. A steady state forms the effects of re-
laxation and RF rotation perfectly cancel, which, for
large α requires the magnetization length to be very
small (Fig 2, red line).

2. When precession is significant, it almost completely
cancels RF nutation. The magnetization follows the
path(s) shown in Fig. 2. The signal is refocused mid-
way through the sequence along either the positive
or negative y-axis, depending on the direction and
amount of precession.
The magnetization length is such that the direction
of relaxation is orthogonal to the magnetization vec-
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tor. This means that as the magnetization vector di-
rection approaches the Mx − My plane, the vector
length becomes smaller.

The motion in the steady state is a function of several
parameters. First, the RF flip angle, α, and phase, φ,
determine the direction and amount of rotation. The reso-
nance frequency and repetition time, TR, give the amount
of precession between RF pulses. The relaxation times,
T1 and T2, together with TR determine the amount of
magnetization decay and recovery.

The signal magnitude varies periodically with resonant
precession with a period of 360◦. Immediately before, and
immediately after the RF pulse, the transverse magnetiza-
tion component is confined to a half plane. The signal is
also refocused by the RF pulse [11], resulting in piecewise
constant phase midway between RF pulses.

2.1 RF Phase Cycling

If the RF and receiver phase are incremented by ∆φ on
each repetition, the magnetization dynamics of Fig. 2 will
be altered. A constant phase increment can be viewed
as a shift in the center frequency of ∆φ/TR [4, 12]. The
result is that the signal profile in Fig. 2c is shifted along the
precession axis by ∆φ, and an additional phase of ∆φ/2
is added to the signal phase.
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Figure 3: Balanced SSFP signal magnitude and phase as a
function of resonant precession (◦) for ∆φ = 0◦, ∆φ = 180◦,
and ∆φ = 90◦. The magnitude and phase profiles shift along
the precession axis by ∆φ, and the phase changes by ∆φ/2.

2.2 Frequency Modulation

The RF and receiver phase can also be modulated us-
ing quadratic phase increments, where ∆φ is increasing
by a constant factor on each repetition. This results in
the center frequency shifting with time, so the signal pro-
file of Fig. 2 slowly shifts along the horizontal axis. If the
quadratic phase increment is small, there is little distortion
to the signal profile, and spins can “track” the frequency
change [13]. For larger phase increments, the profile be-
comes somewhat distorted. Either way, spins will form a
periodic steady state with a period equal to the time for
the frequency shift to equal 1/TR.

3 Pulse Sequences

The previous section described the steady-state that
forms when a periodic sequence of RF rotations, preces-
sion, and decay are applied. We now describe several
different pulse sequences using these concepts to un-
derstand the signal formation with each sequence. In all
cases, we use the x, y and z axes as the readout, phase-
encode and slice-select axes respectively.

3.1 Balanced SSFP

Balanced SSFP sequences (TrueFISP, FIESTA,
Balanced-FFE, True SSFP) have the signal charac-
teristics described already. Normally, the RF pulse sign
alternates, which is equivalent to a phase increment of
180◦. This shifts the signal profile so that “on-resonant”
spins produce high signal (Fig. 3, dashed line). Figure 4
shows a balanced SSFP pulse sequence. Note that all
gradient waveforms are balanced, that is they have zero
net area over a full repetition.

Balanced SSFP sequences give the highest signal level
of the rapid gradient echo sequences [14,15]. The signal
shape is highly sensitive to resonance frequency so mini-
mizing precession, and thus TR, is important for avoiding
“banding artifacts” or signal variations across images [16].
However, the minimum time required to achieve adequate
spatial resolution or to limit RF power absorption limit the
minimum TR that can be achieved. Furthermore, sus-
ceptibility variations make balanced SSFP more difficult
at higher field strengths.

3.2 Gradient-Spoiled Echo

The gradient-spoiled sequence, (FE, GRASS, FISP,
FAST), uses a spoiler gradient at the end of the sequence
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Figure 4: Balanced SSFP pulse sequence. All gradient wave-
forms are fully rewound, or balanced. The RF pulse sign usu-
ally alternates, so that a high signal is produced for on-resonant
spins. The signal echo location is shown on the Gx waveform.

as shown in Fig. 5 [7,17]. Each spin now sees a position-
dependent rotation in addition to that due to free preces-
sion. Note, however that the steady state for each spin
at time points 1 and 3 (Fig. 1) is the same as that for
balanced SSFP, when the gradient-induced rotation is in-
cluded in the precession per TR.

The spoiler gradient area is chosen to induce rotations
that range over at least 360◦ within each voxel, and it as-
sumed that there is a uniform distribution of precession
values within a voxel. Thus the signal immediately after
the RF pulse is the average transverse component of all
precession values, i.e. the average of the balanced SSFP
signal on the dotted ellipse in Fig 2b. Between the RF
pulse and the echo time, some dephasing of the signal
due to frequency variations can occur. This results in T ∗

2
signal loss.

There are many variations of gradient-spoiled echo
sequences, depending on the direction and size of the
spoiler gradient. However, if the assumption can be made
that the unbalanced gradient induces numerous rotations
within a single voxel, the signal is similar for all variations.

3.3 Reversed Gradient-Spoiled Echo

The reversed gradient-spoiled echo sequence (CE-FAST,
SSFP, T2-FFE and PSIF) instead uses a gradient spoiler
at the beginning of the sequence, as shown in Fig. 6 [17].
As with the gradient-spoiled sequence, the steady state
magnetization for any single spin is the same as for bal-
anced SSFP when the precession due to the gradient
spoiler is included. However, imaging occurs after the
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Figure 5: Gradient spoiled pulse sequence. In this example,
a spoiler gradient is included on both the readout (x) and slice-
select (z) axes. The signal echo location is shown on the Gx

waveform.

spoiler gradient, at time point 3 in Fig. 1. The signal is
the average transverse component of the balanced SSFP
magnetization, or the average signal on the dashed el-
lipse in Fig 2b. Again, T ∗

2 signal loss occurs, but should
be calculated in reverse from time point 3 to the point of
the imaging echo.
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Reversed Gradient Spoiled Sequence

Figure 6: Reversed gradient spoiled pulse sequence. This is
precisely the reverse of the gradient spoiled sequence. Note
that it is important to “rephase” the readout gradient and “defo-
cus” the slice-select gradient.

3.4 Fast Acquisition Double Echo (FADE)

The fast acquisition double echo (FADE) sequence ac-
quires both the gradient-spoiled echo and the reversed
gradient-spoiled echo in a single repetition [18]. This is
achieved by placing the gradient spoiling in the middle of
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the sequence as shown in Fig. 7. The echo characteris-
tics are unchanged from the descriptions in §3.2 and §3.3.
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Figure 7: FADE pulse sequence, which acquires both the
gradient-spoiled echo and the reversed gradient-spoiled echo
(Shown on Gx waveform). A spoiler gradient is included on
both the readout (x) and slice-select (z) axes, midway between
RF pulses.

3.5 RF Spoiling

Gradient spoiled, reversed gradient spoiled and balanced
SSFP sequences all have a signal with “T2/T1” contrast.
The T2 dependence can be virtually eliminated by RF
spoiling [19–21]. RF spoiling quadratically increments the
phase of the RF pulse with the result that residual trans-
verse magnetization before the RF pulse is not refocused
and can be neglected. The sequence looks exactly like
the gradient-spoiled sequence (Fig. 5 The signal in RF
spoiled sequences (SPGR, FLASH, T1-FFE) can be cal-
culated by numerical simulation, but is well approximated
by simply neglecting residual transverse magnetization
prior to each RF pulse (case 2 described in §1.3).

4 Imaging Considerations

In this section, we briefly discuss the signal consider-
ations with the rapid gradient echo pulse sequences,
including relative signals and contrast of different se-
quences.

4.1 Signals and Contrast

The contrast behavior of rapid gradient-echo sequences
is highly dependent on flip angle. TR is usually kept as

short as possible to minimize scan time or to reduce band-
ing artifacts in balanced SSFP. Figure 8 shows the flip-
angle dependence of four sequences: balanced SSFP
with and without alternating the RF pulse sign, gradient
spoiled sequences, and RF spoiled sequences. For cer-
tain T1 and T2 times, each sequence has an optimal flip
angle that maximizes SNR. An interesting point to note
is that at the Ernst angle, cos−1(e−TR/T1), which maxi-
mizes signal for RF-spoiled sequences, the signal is iden-
tical for all sequences. [5]. The flip angle is usually chosen
to maximize a combination of SNR as well as contrast be-
tween the tissues of interest.
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Figure 8: Signal as a function of flip angle for (a) blood and
(b) muscle. Shown are the signals from balanced SSFP (0 Hz,
alternating RF sign), gradient spoiled, balanced SSFP (0 Hz,
non-alternating RF sign), and RF spoiled sequences. The Ernst
angle, cos−1(e−TR/T1), signal for all sequences, and the peak
signal for RF spoiled sequences [5]

Figure 9 compares the signal in balanced SSFP,
gradient-spoiled, reversed gradient-spoiled and RF-
spoiled sequences with identical TR and flip angle. Four
tissues are compared: blood, liver, fat and muscle. The
balanced SSFP signal is very sensitive to flip angle, and
the shape also depends on the T1/T2 ratio. At low T1/T2,
the signal is “M-shaped” (fat, blood). At higher T1/T2

(muscle, liver) or higher flip angles (not shown) the sig-
nal shape is more smooth. Balanced SSFP gives the
highest signal. Gradient-spoiled and reversed gradient-
spoiled sequences give similar signal levels, the latter be-
ing more T2-weighted. Finally, RF-spoiled sequences are
purely T1-weighted, and give the lowest signal of these
four sequences.
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Figure 9: Comparison of signals in different tissue with bal-
anced SSFP, gradient spoiled, reversed gradient spoiled, and
RF spoiled sequences. (a) Blood, T1/T2 = 1000/200 ms. (b)
Liver, T1/T2 = 500/43 ms. (c) Fat, T1/T2 = 270/85 ms. (d)
Muscle, T1/T2 = 850/47 ms. Other sequence parameters are
TR=4 ms, flip angle=30◦. TE=0 ms for gradient spoiled and
RF spoiled, TE=2 ms for balanced SSFP, and TE=TR for re-
versed gradient echo. Note that the balanced SSFP signal is
highest, but also is sensitive to frequency variations. The re-
versed gradient spoiled sequence produces more T2 weight-
ing than the gradient spoiled sequence. Finally, RF spoiled se-
quences produce the lowest signal, but it is purely T1-weighted.

4.2 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is one of the most impor-
tant considerations in selecting imaging parameters for
MRI. SNR is proportional to voxel size, the square root
of the total acquisition time, and the signal level for the
given sequence and parameters.

The sequences shown here typically achieve good
SNR by using a short TR so that the signal is averaged
over many repetitions, often with 3D phase-encoding.
However, as TR is shortened, a greater proportion of time
is taken by RF pulses and preparatory gradients such as
phase-encoding, dephasing and rephasing. This means
that the “acquisition duty cycle” or the portion of TR spent
acquiring data is critical. Maximizing SNR becomes a
trade-off between keeping TR short to minimize T ∗

2 loss
or banding artifacts (in balanced SSFP) and keeping the
readout duty cycle long.

5 Summary

Rapid gradient echo sequences with very short repetition
times are commonly used in MRI. The signal behavior of
these sequences depends strongly on the residual mag-
netization prior to each excitation, which can be altered
by using combinations of gradient spoiling and RF spoil-
ing. After many sequence repetitions, the magnetization
reaches a steady-state, where it varies periodically. The
steady state calculation for the fully-balanced SSFP se-
quence can be used to understand the signal formation
in gradient spoiled and RF spoiled sequences. Imaging
parameters must then be chosen to optimize SNR and
contrast for specific applications.
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