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Highly Constrained Backprojection for Time-Resolved MRI

C. A. Mistretta,"*** O. Wieben,? J. Velikina," W. Block,"* J. Perry," Y. Wu,'

K. Johnson,? and Y. Wu'

Recent work in k-t BLAST and undersampled projection an-
giography has emphasized the value of using training data sets
obtained during the acquisition of a series of images. These
techniques have used iterative algorithms guided by the train-
ing set information to reconstruct time frames sampled at well
below the Nyquist limit. We present here a simple non-iterative
unfiltered backprojection algorithm that incorporates the idea
of a composite image consisting of portions or all of the ac-
quired data to constrain the backprojection process. This sig-
nificantly reduces streak artifacts and increases the overall
SNR, permitting decreased numbers of projections to be used
when acquiring each image in the image time series. For un-
dersampled 2D projection imaging applications, such as cine
phase contrast (PC) angiography, our results suggest that the
angular undersampling factor, relative to Nyquist requirements,
can be increased from the present factor of 4 to about 100 while
increasing SNR per individual time frame. Results are presented
for a contrast-enhanced PR HYPR TRICKS acquisition in a
volunteer using an angular undersampling factor of 75 and a
TRICKS temporal undersampling factor of 3 for an overall
undersampling factor of 225. Magn Reson Med 55:30-40, 2006.
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There are many applications for which it is desirable to
have high spatial and high temporal resolution. K-space
sampling that obeys the Nyquist theorem usually pre-
cludes simultaneous achievement of these aims in MR
imaging. Among other approaches, radial acquisitions
have been proposed for accelerated sampling schemes.
Peters (1) and Vigen (2) reported on the use of 3D MR
angiography acquisitions in which 2 dimensions were en-
coded using undersampled projection reconstruction and
the third was encoded using phase encoding. In these
applications, the projections are rotated around a single
axis and, even if the planes containing the projections are
completely sampled in the Fourier encoded direction, the
undersampling factor, relative to that required by the
Nyquist theorem, is limited to about 6 due to the streaks in
the axial reformatted images.
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When radial sampling is extended by distributing the
projections in all directions in 3D as in VIPR (3), signifi-
cantly higher acceleration factors relative to fully sampled
acquisition can be achieved. We recently reported on a
relatively artifact free PC VIPR (phase contrast Vastly un-
dersampled Isotropic PRojection imaging) acquisition in
which an acceleration factor of 61 relative to conventional
Cartesian 3D PC was achieved (4). This acceleration factor
was defined as the ratio of an imaging speed index for PC
VIPR and Cartesian 3D PC acquisitions. This index was
determined as the volume covered divided by the product
of scan duration times voxel size.

Despite such large increases in acquisition speed, some
applications would benefit from further accelerations. For
example, in recent cine PC VIPR measurements with 3D
flow encoding for pressure mapping in 1-2 mm thick
vessels using an acquisition matrix of 256 X 256 X 256
voxels and 10 cardiac phases in a 10-minute scan time, we
underestimated the velocities in peak-systole by about
13% (5). In this work, 2000 VIPR projections were col-
lected for each of the cardiac phases. This represents an
undersampling factor of 50 relative to the Nyquist require-
ment of approximately 100,000 projections for a 256° im-
age matrix. It would be desirable to further increase the
number of available cardiac phases and also to further
reduce the scan time.

In the case of time-resolved contrast-enhanced VIPR
studies, the streak artifacts have been reduced using a
spatial frequency dependent (Tornado) filter (3) in which
the temporal window is increased as the radial distance
from the center of k-space increases. This reduces streak
artifacts but causes vessel edges to have a reduced tempo-
ral bandwidth and to appear too early in the reconstructed
time sequence. It would be desirable to reduce this effect.

Recently, the k-t BLAST technique has been proposed
(6,7). With this technique, it is recognized that an acquired
time series contains large amounts of correlated informa-
tion in the k-space data associated with a set of time
frames. In k-t BLAST, which has also been applied to
radial acquisitions (7), a low spatial frequency training
data set is acquired to remove the aliasing that occurs
when undersampling is performed in the spatial and tem-
poral domains. Using an iterative reconstruction, signifi-
cant reductions in the required data can be achieved.
Huang, Gurr, and Wright (8) have reported on an MR
angiographic technique that also incorporates the idea of
using a training set to guide the reconstruction of 3D
images using pairs of orthogonal 2D projection images,
similar to modern X-ray DSA acquisitions. In this method
an iterative reconstruction is guided using correlation
analysis of data from a training set that is comprised of all
acquired orthogonal 2D projection images. This method
also has the potential to significantly improve acquisition
speed for time-resolved series.
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Here we present an approximate reconstruction method
based on a non-iterative, unfiltered, constrained back-
projection reconstruction to improve the achievable tem-
poral resolution in radial MR imaging. With this approach,
the reconstruction of individual time frames is achieved
by limiting the back-projected information to voxels de-
fined to be vessels in the composite image generated from
all acquired projections. It uses a back-projection weight-
ing defined by the intensities in the composite image. The
method provides an additional acceleration factor beyond
that provided by undersampled radial acquisition and is
applicable to time resolved acquisitions using arbitrary
k-space trajectories. The method is best suited for situa-
tions in which temporal signal changes are similar at all
spatial positions but can be adapted to accommodate sit-
uations such as delayed filling of peripheral arteries. The
objects in the imaging volume should also not change
positions over the time frames.

METHODS
Theory

The basic acquisition and reconstruction technique, which
we will refer to as HYPR for HighlY constrained back-
PRojection, is illustrated schematically in Fig. 1. The data
are ideally acquired in the form of time frames containing
interleaved and equally spaced k-space projections. All of
the acquired data are combined and used to reconstruct a
composite image, either by filtered backprojection or by
regridding and a subsequent inverse Fourier transform. A
HYPR time frame is reconstructed by multiplying the com-
posite image by backprojections generated by calculating
the Fourier transform (image space profile) of each time
frame radial k-space projection and normalizing them by
the corresponding image space profile from the composite
image. The contributions from all projections in the time
frame are summed.

The data reconstruction method is illustrated in Fig. 2
for the case of a single VIPR projection characterized by
the spherical coordinates 6, ¢, and r. At each radial loca-
tion, r, the value of the image space profile obtained by
Fourier transformation of a k-space projection within a
time frame is spread into the Radon plane perpendicular to
the orientation of the radial k-space line. Instead of a
filtered backprojection process in which projection values
are filtered and uniformly distributed into the Radon
plane, the projection value is distributed in the Radon
plane using information from the composite image. The
profile value is weighted at points X, y, and z in the plane
based on the image intensity at the corresponding points
in the composite image. This is achieved through simple
multiplication of the normalized profile value by the com-
posite image. The product is normalized by the corre-
sponding profile value of the composite image. The for-
mula for the reconstruction is

HYPR image(x,y,z)=(1/N,,)*C(x,y,z)*
DIP(r,0,4)/P (r,0.4)] [1]

where the sum is calculated over all projections in the
current time frame for which the corresponding (r,0,0)
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FIG. 1. Schematic diagram of the HYPR reconstruction algorithm.
For simplicity, the diagram shows a single projection for each time
frame. A 1D Fourier Transform converts the radial k-space lines to
projections in image space. A composite image is reconstructed
from the projections in all time frames. For each individual HYPR
time frame, the composite image is multiplied by the unfiltered
backprojected profile P specific to the time frame normalized by the
corresponding unfiltered backprojected profile P calculated from
the composite image.

Radon plane contains the point (x,y,z). N, is the number
of projections in the time frame. P(r,0,¢) is the profile value
for this plane, P(r,0,¢) is the corresponding value calcu-
lated from the time-averaged composite image, and
C(x,y,z) is the composite image itself.

An example containing 2 vessels only is shown in Fig. 2
to visualize this method. Each, for simplicity, passes
through 1 voxel in the Radon plane at location r. The
signal in the projection P(r,0,$) obtained at r following
Fourier transformation of the acquired VIPR k-space pro-
jection is shared with all voxels within the associated
Radon planes. This is accomplished using weighting fac-
tors calculated from the time-averaged composite image
that has signal values of w1 and w2 for arteries 1 and 2. In
the simple case illustrated in Fig. 2, the signal contribu-
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FIG. 2. lllustration of the HYPR algorithm for the case of 3D VIPR.
Each projection profile value is distributed in the Radon plane per-
pendicular to the profile in proportion to the signal present in the
composite image. Shown here is a Radon plane at radius r, polar
angle 6, and azimuthal angle ¢. P (r,0,4) is the projection value
representing the sum of signals in the plane.

tions for a single projection in the Radon plane passing
through r for vessels 1 and 2 are given by Eq. [1] as

S;=w,*P/(w;+w,) S,=w,*P/(w;+w,) [2]

For a 2D projection distribution, the information detected
at each point in the image space profile would be back-
projected to those vessel voxels lying on a single straight
line perpendicular to the projection.

The HYPR reconstruction dramatically reduces streak
artifacts in the space between vessels for a time-resolved
imaging sequence. In the limiting case in which all of the
vessels have the same temporal waveform, this process
appropriately distributes the projected intensity into the
correct locations and eliminates vessel-to-vessel streak ar-
tifacts. In this specific case, a complete and error-free
reconstruction can be achieved with a single projection
per time frame. In practical applications, where there may
be significant differences in the temporal behavior at dif-
ferent points in space, results are improved as greater
numbers of projections are acquired per time frame. This
will be illustrated in the simulations.

The spatial resolution of the HYPR image is determined
by the spatial resolution of the composite image. There-
fore, without application of reregistration techniques
based on the projection information (9), the technique is
limited to situations in which vessel positions remain
stationary during the acquisition either because they are
not moving or because ECG gating is employed.

The HYPR reconstruction can be applied to acquisitions
using arbitrary k-space trajectories by regridding the ac-
quired k-space data into projections proceeding as above.
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However, direct acquisition of the projections is likely to
be most effective.

Noise Considerations

The individual time frame projection, the projection
through the composite image, and the composite image
itself can contribute to the stochastic noise in the image
calculated using Eq. [1]. In the Appendix it is demon-
strated that the SNR in the reconstruction of each time
frame is dominated by the composite image. In this article,
SNR is calculated as the ratio of vessel signal to the noise
SD within the vessel. CNR is calculated as the difference
between the vessel and background signals divided by the
SD of the background noise. The overall SNR and CNR are
limited by a combination of the stochastic noise and the
noise due to streak artifacts. It is shown in the Appendix
that the stochastic component of the SNR in the HYPR
image is given by:

SNRHYPR: SNRcomposite/ [ 1+ Nf/NvZ + Npix/(Npsz) ] 1z [3]

where SNR ,,,posite 18 the SNR in the composite image, N
is the number of frames in the time series, N, is the number
of vascular pixels in the projection, N,,;, is the number of
pixels in the projection (e.g., 256 for 2D or 256 X 256 for
3D), and N, is the number of projections per time frame.
For the simulations presented in this article, N, is on the
order of 10 and the SNR is dominated by SNR_,,,,0site: FOT
the case of a single vascular pixel, the second and third
terms in the denominator of Eq. [3] dominate. These cor-
respond to the noise in the time frame projection and the
composite image projection, respectively.

Some of the following simulations will further explore
the SNR and CNR properties of the HYPR method.

Simulations

Although the HYPR technique may be applied in 2DPR or
in 3D VIPR we have, for simplicity, simulated the HYPR
concept in 2 dimensions using MATLAB (The Mathworks
Inc. Natick, MA, USA). Three simulations have been im-
plemented. The first image set was generated from an ECG
gated PC VIPR data set with regional variations in the
temporal behavior of the signal. This simulation was in-
tended to investigate the accuracy of the temporal wave-
forms derived from the HYPR algorithm in the presence of
spatial variations of the temporal waveform. The second
simulation was designed to investigate the SNR character-
istics of the HYPR technique. In particular, an estimate of
the achievable increase in scan speed through reduction in
the number of projections per frame relative to conven-
tional undersampled acquisition was the goal of this sim-
ulation. The third simulation investigates the behavior of
HYPR for contrast-enhanced MRA with delayed vessel
filling in one region of the field of view.

Simulation One

In the first simulation, designed to investigate non-sto-
chastic streak artifacts, a maximum-intensity projection
(MIP) time frame from a time resolved PC VIPR series was
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FIG. 3. Images from the modulated time series
used for Simulation 1. The right side of the image is
constant in time. The left side is sinusoidally mod-
ulated in time.

Minimum signal on
a left side of image

regarded as a relatively artifact free image and used to
artificially generate 16 time frames. No additional noise
was added. The original time frame was weighted differ-
ently on the right and left sides of the image, with the left
side being modulated with a peak-to-peak sinusoidal sig-
nal variation representing 40% of the mean signal while
the right side was kept constant. Images from 2 time frames
having minimum and maximum signal values on the left
side of the field of view are shown in Fig. 3. The sinusoidal
modulation was varied to produce one half, 2, or 4 cycles
of the intensity variation per cardiac cycle on the left side
while the right side remained unchanged.

The original image used to generate the time series was
well sampled in projection angle. Simulations were per-
formed assuming just 4, 6, 8, or 10 projections per time
frame. A composite image was formed by using the as-
sumed number of projections in each of these time frames
and summing over all time frames.

For each time frame the HYPR algorithm was applied at
each projection angle and the results were summed to form
the HYPR image time frame. Conventional filtered back-
projection images, referred to here as FBP images, using
the same number of projections per time frame as the
HYPR frame used, were reconstructed for comparison with
the HYPR images.

ROIs comprising 32 pixels were drawn in the middle
cerebral arteries on the right (unmodulated) side and the
left (modulated) side and were used to generate temporal
waveforms for the input image series and the HYPR and
FBP image series. The accuracy of the temporal waveforms
and the image quality of all 3 series were compared.

Simulation Two

The second simulation was designed to demonstrate the
relative roles of stochastic and non-stochastic noise in the
phase contrast MRA time series. In this simulation HYPR
images were generated for several different combinations
of projections per image and numbers of cardiac phases.
The vessel image quality was compared with that of a
conventional undersampled FBP image formed from 40
projections.

Gaussian noise equal to 3% of the peak vascular signal
was added to each of the 16 input images. A fully sampled
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image with 400 projections was generated from the first of
these images in the time series. The CNR values for the
various cases illustrated in the Results section were ex-
pressed as ratios relative to the values in the fully sampled
image.

Simulation Three

The third simulation represents the use of HYPR for con-
trast enhanced MRA. A series of 11 time frames from a PR
TRICKS acquisition (2) were represented by their MIP
images and used to test the properties of the HYPR algo-
rithm. PR TRICKS is a hybrid 3D technique employing
Cartesian temporal undersampling in 1 dimension and
undersampled projections in 2 dimensions. In this series,
there was delayed filling in one of the legs. In such cases
the use of a composite image comprised of all frames can
potentially alter the observed time course because all ves-
sels will be filled in the composite image. These composite
image vessels can deposit signal in voxels in early frames
before contrast material has actually arrived. To avoid
such errors in the HYPR images, a progressive series of
composite images was used instead. For the first time
frame, only the first 2 images in the series were used to
form the composite image for the HYPR reconstruction.
For each additional time frame, an additional image from
the series was added to the composite image. This is illus-
trated in Fig. 4. For example, using this scheme, for the
fifth time frame, 6 time frames of data would be included
in the composite C5. The HYPR time series and the FBP
time series were reconstructed using 30 projection angles.

PR HYPR TRICKS Volunteer Study

PR TRICKS data were acquired using a 17 cc injection of
Omniscan at 2cc/s. Ten projections per time frame were
used. The current implementation of the sequence limits
the number of projection interleaves to 20, resulting in 200
independent projections being available for the composite
image, thus reducing the potential SNR gain. For the in-
plane matrix of 512 X 512, the 10 projections represented
an angular undersampling factor of 75. The TRICKS parti-
tioning on the slice encoding direction used 3 k-space
regions, producing a temporal undersampling of 3, result-
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FIG. 4. lllustration of the formation of progressive composite im-
ages for use in contrast enhanced time-resolved angiography. The
first composite is formed from 2 or more time frames. As additional
time frames are acquired, their information is added to the compos-
ite image.

ing in a combined undersampling in k and t of 225. FBP
and HYPR signal curves from 2 regions of interest were
compared. HYPR was applied on a slice by slice basis.

RESULTS

Figure 5 shows the results of reconstructing the first time
frame from the original series of phase contrast MIP images
before adding the additional left/right modulation. FBP
and HYPR reconstructions using 4, 6, 8, and 10 projections
are shown. FBP images reconstructed with so few projec-
tions do not allow for the recognition of the imaging scene
while the HYPR images demonstrate diagnostic image
quality.
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One of the properties of the HYPR algorithm is its ability
to reduce intravascular streak artifacts. This is due to the
knowledge of where to deposit the backprojected signal
based on the composite image information. In Fig. 6 the
10-projection HYPR image of Fig. 5 is compared with an
image formed by a simpler algorithm in which a 10-pro-
jection FBP image is multiplied by the composite image.
Once the intravascular streak artifacts have been formed
by the FBP process, they cannot be removed by multipli-
cation with the composite image.

Simulation One—Waveform Behavior

Figure 7 shows the waveforms for the left (modulated) side
of the image. The measured waveforms for the HYPR re-
construction were exact for the special case in which one
horizontal projection (summing vertical data) was used for
reconstruction (not shown). This is due to the fact that
there was no mixing of temporal behavior from the left
side of the image to the right side. When a vertical and a
horizontal projection are used, there is mixing and the
HYPR waveform was significantly different from that of
the programmed temporal behavior.

However, the HYPR waveform was in fairly good agree-
ment with the programmed waveform when 4 or more
projections were used from each time frame. The maxi-
mum and the mean errors for the 10-projection case were
9% and 3.5%, respectively. Although the FBP image qual-
ity was quite poor due to severe streaking artifacts, the FBP
waveform was surprisingly good for 10 or more projections
for this particular vessel configuration and temporal wave-
form distribution. These results were very similar for the
one half, 2, and 4-cycle modulations.

Figure 8 shows the results for the right, unmodulated
side. There is some mixing of temporal behavior from the
left to the right side, resulting in non-constant waveforms
on the left side. For the 10-projection case, the maximum
error is 12% and the average error is 5%. This result is

FIG. 5. Comparison of under-
sampled standard filtered back-
projection (FBP) and HYPR im-
ages formed from 4, 6, 8, and 10
projections. A time series con-
taining 16 frames was used in this
example.
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FIG. 6. Comparison of 10-projection HYPR image
(@) with an image formed as a product of a 10-
projection FBP multiplied by the composite image
(b). The image in (b) retains the basic FBP intra-
vascular streak artifacts.

a 10 projection HYPR

fairly independent of the number of projections used from
each time frame

Simulation Two—SNR Behavior

Figure 9 compares HYPR images generated with several
combinations of projections per time frame and total num-
bers of time frames. The SNR values involving the SD of
the pixel values were somewhat difficult to compare with
the predicted values using the formulas in the Appendix.
This was due to contributions to the SD from anatomic
variations in the vessel signal. CNR values were quite
reliable and are relative to a fully sampled image with 400
projections. The CNR value in the standard 40-projection
FBP image is decreased by more than the factor of the
square root of 10 from reducing the scan time by 10. This
is due to the presence of non-stochastic noise originating
from undersampling artifacts. When the HYPR technique
is applied with 40 projections in each of the time frames of
a 30 frame temporal acquisition, the CNR is increased by a
factor of 6 relative to corresponding 40-projection FBP
time frames in a series requiring the same imaging time.
For a 20-frame acquisition, the image quality of a 4-pro-
jection per time frame HYPR image is better than that of

8000 —— 8000
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the 40-projection FBP image and increases further for a
30-frame acquisition where, in addition to a factor of 10
increase in imaging speed per time frame, the CNR is more
than doubled.

Simulation Three—Contrast Enhanced Angiography

Figure 10a (top row) shows 8 MIP image time frames from
a PR TRICKS acquisition. These images were acquired
with 150 projections per frame and are relatively artifact
free. The series shows delayed filling on the left side of the
field of view (right leg).

Figure 10a (middle row) shows the image series ac-
quired when these time frames are subjected to reprojec-
tion and filtered backprojection using only 30 projection
angles. Streak artifacts are severe and the images are of
non-diagnostic quality. Figure 10a (bottom row) shows the
time series reconstructed with the HYPR method. Streaks
are significantly reduced compared to the FBP images. The
image quality improves with the frame number due to the
increasing numbers of projections in the sequence of com-
posite images used. Figure 10b shows the signal curves for
FBP, HYPR, and the Actual waveform used as input to the
simulations. For the first 2 frames, the FBP and HYPR
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Vessel Intensity on Unmodulated Side (Arbitrary Units)
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overestimate the signal due to the presence of streak arti-
facts. HYPR streak artifacts are reduced as more projec-
tions are added to the composite mask.

Figure 11 displays the results of the PR HYPR TRICKS
volunteer study. Figure 11a shows every fifth 940ms FBP
time frame. Image quality is unacceptable due to streak
artifacts and low SNR due to the use of just 10 projections
per time frame. Figure 11b shows the HYPR results, which
demonstrate greatly improved SNR and streak reduction.

DISCUSSION

The simulations performed here represent the expected
performance of HYPR in acquisitions in which the pro-

FIG. 9. Comparison of image
quality of an undersampled FBP
image obtained with 40 projec-
tions with that of HYPR images
obtained with various numbers of
projections (pr) and numbers of
frames (fr) in the time series. For a
30-frame acquisition, the HYPR
technique provides a factor of
100 undersampling factor. Image
quality is better than the FBP
technique, which provides a fac-
tor of 10 undersampling factor rel-
ative to a fully sampled (400 pro-
jection) image. For the same num-
ber of projections, the FBP and

40pr FBP

HYPR images require equal ac- | Predicted
quisition times. Total scan time is ;
proportional to the product of the Relatlve CNR

number of projections and num-
ber of frames. Undersampling
factors are shown on the right.

Measured
Relative CNR

jection angles are rotated around a fixed axis as in PR
TRICKS (2) and PIPR (Phase Imaging with PRojections)
(10). In such applications, standard reconstruction of an
undersampled projection set permits undersampling
factors of about 6 before artifacts become objectionable
when axial reformatted images oriented perpendicular
to the projection rotation axis are viewed. For phase
contrast applications using this acquisition geometry,
HYPR provides an additional acceleration factor of
about 25 depending on the number of cardiac phases in
the acquired data. For contrast enhanced angiography in
anatomic regions where late filling is a potential prob-
lem, such as in Simulation 3, Fig. 10 shows that the use
of a progressive series of composite images leads to a

40pr 30fi

4pr 20fr

4pr 30fr
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FIG. 10. (a) Simulation 3. Top row: frames 2, 4, 6, and 8 from a clinical PR TRICKS examination that used 150 projections per time frame.
Middle row: 30 projection FBP with undersampling factor of 13. Severe streaks are evident. Bottom row: 30 projection HYPR images. Image
quality improves later in the exam because of increased projections in the composite image. (b) Signal curves for Simulation 3. FBP and
HYPR signals are higher than Actual for the first 2 frames due to background signal. HYPR estimate improves as frames are added to the

composite image.

variable increase in the HYPR image quality from the
first frame to the eighth frame.

When undersampled projection imaging was extended
from a 2-dimensional distribution to the 3-dimensional
VIPR trajectory, which varies both the polar and azimuthal
orientations of the projections, undersampling factors
were increased by another factor of 10, resulting in under-
sampling factors of about 50 (5). This is because the arti-
factual spreading of signal from one source to another falls
off according to 1/r* as opposed to 1/r as in the purely
azimuthal case. This 1/r* behavior associated with the
VIPR trajectory and the use of greater numbers of projec-
tions in the VIPR case will also likely reduce the potential
distortion of the measured temporal waveforms when ap-
plying the HYPR technique, thereby reducing the number

FIG. 11. Every tenth frame of a PR TRICKS
time series using 10 projections per 940ms
time frame. The combined k-t undersam-
pling factor = 225. Conventional PR
TRICKS is shown in (a@). HYPR PR TRICKS is
shown in (b).

of required projections by greater factors and reducing the
need for a progressive mask series. This 1/r* reduction of
artifact signal level would very likely reduce the contam-
ination of the waveforms observed in Simulation 1. Addi-
tional studies are needed to test this hypothesis. In gen-
eral, contamination will also be reduced as the density of
signal voxels is reduced. Therefore, HYPR is best suited for
data sets such as those in angiography where the occupied
voxel fraction is on the order of 0.2%. However, other data
sets, such as activation signal distribution in fmri, should
also be considered for potential application.

The potential implications of the HYPR technique can
be appreciated by considering how the acquisition param-
eters might be changed for our recently reported measure-
ments of pressure drops in small vessels (5). In that work
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FIG. 12. Time frame acceleration factors for
several acquisition techniques. The acceler-
ation factors indicate the time savings for

individual time frames relative to fully sam-
pled radial acquisition. Scan time is the
product of this time and the number of
frames. HYPR acceleration factor estimates
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L 1 1

presume a time series of 10-30 time
frames. Acceleration factors do not include
the potential benefits of combination with
parallel imaging techniques. HYPR acquisi-
| tion parameters have been chosen to main-

100

log(time frame acceleration factor)

we use a 256 X 256 X 256 acquisition matrix and obtain
3-component velocity information in 10 cardiac phases in
about 10 minutes. The angular undersampling factor rela-
tive to the fully sampled 100,000 projections required by
the Nyquist theorem is about 50, resulting in about 2000
projections per cardiac phase. If 30 HYPR time frames
were used and, as our calculations in the Appendix sug-
gest, gains similar to those shown in the 2D simulations
presented here also hold for VIPR, the number of projec-
tions per phase could be further reduced by a factor of 10
without additional undersampling artifacts. Although we
have only presented 2D simulations here, this would re-
sult in an overall undersampling factor of 500 in the 3D
case and would permit, for example, an increase in the
number of cardiac phases from 10 to 30 and a reduction of
the scan time from 10 minutes to about 3 minutes simul-
taneously. Current ungated PC VIPR results (4) suggest that
the SNR in a 3-minute composite image will support this
reduction in scan time. Our calculations (Appendix) also
predict a 70% increase in SNR in this case. The scan time
for a 3D Cartesian phase contrast scan providing 256 X
256 X 256 with 3 components of velocity and 30 time
frames, assuming a TR of 10 ms and a 4 point acquisition
(1 reference + 3 velocity encodings), would be 21.3 h.
Figure 12 summarizes the time frame acceleration fac-
tors associated with several undersampled projection ac-
quisition schemes in MR angiography. The undersampling
strategies employed are indicated by k for purely k-space
undersampling, ¢ for purely temporal undersampling, k-t
for a combination of k-space and temporal undersampling,
and k-t* when the k-t strategy also employs the concept of
exploiting the composite image to guide the reconstruc-
tion. The acceleration factors reflect the time-savings for
the acquisition of individual frames. For the HYPR tech-
nique, it is necessary that there be on the order of 10-30
time frames and an adequate number of summed projec-
tions so that a sufficient SNR and streak reduction can be
achieved in the composite image. Therefore, accelerations
in scan time must be calculated with this constraint in
mind. The hybrid undersampled PR technique (1), which
undersamples the azimuthal angle relative to a single axis,
typically permits time frame acceleration factors of about
6, based purely on undersampling of k-space in the azi-
muthal direction. The PR TRICKS technique (2) combines

tain current image quality in spite of higher
1000 accelerations.

undersampling in k-space and time and produces acceler-
ations of about 18. PC VIPR has produced acceleration
factors of 50, due entirely to the combination of polar and
azimuthal k-space undersampling. The combination of
HYPR with undersampled Hybrid PR produces accelera-
tion factors on the order of 100, as indicated by compari-
son of the 400-projection and 4-projection images in Fig. 8.
This is a factor of 25 beyond what is achievable using
undersampled Hybrid PR alone. The combination of
TRICKS with undersampled Hybrid PR resulted in an un-
dersampling factor of 225 (Fig. 11). This is due to the
additional benefits of combining k-space and temporal
undersampling along with constrained reconstruction (6—
8). The composite mask supports a much higher SNR in
the individual time frames compared with the usual
square root of time SNR dependence one would experi-
ence for the acquisition of a single frame.

The issue of SNR is an important one for all acceleration
techniques, including VIPR and parallel imaging. With an
additional order of magnitude increase in acquisition
speed from VIPR to HYPR VIPR, acceleration factors will
be available that will be capable of providing frame rates
and voxel size reductions well beyond those that can be
supported by the available SNR in some applications.
However, as additional SNR is provided by improved
coils, higher field strengths, improved contrast material, or
perhaps hyperpolarization methods, these highly under-
sampled techniques will be increasingly useful.

The HYPR technique exploits the important concept of
using data obtained throughout the acquisition of the time
series to assist in the reconstruction of the individual time
frames. This concept is clearly stated in the k-t BLAST
literature (6,7) and in the recent work of Huang, Gurr, and
Wright (8). HYPR reconstruction is a simple non-iterative
method, applicable to any time-resolved set of k-space
trajectories, and performs constrained backprojection
based on vessel positions defined in the composite image.
For the limiting case in which the temporal variation of
signals in all parts of the imaging volume remain fixed
from frame to frame, the image volume and waveform can
be determined using a single projection per frame. This is
reminiscent of the situation discussed by Hennig in his
plenary lecture at the ISMRM meeting (11), where a time
series was generated using a single central k-space point to
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modulate the intensity of a known image with a spatially
uniform time dependence. For realistic imaging situations,
the number of required projections will increase as the
temporal behavior becomes more heterogeneous.

For situations where significant spatial variations are
present in the temporal behavior, the progressive compos-
ite image approach allows for the extension of the tech-
nique but at the cost of reduced gains in the SNR, which
will vary within the time series. The progressive mask
concept can be extended to allow for imaging in the ve-
nous phase if desired. In this case the earlier time frames
would be excluded from the composite images used for the
reconstruction of venous phases.

The HYPR technique was applied to phase contrast com-
plex difference speed images in the simulations presented
here. For situations in which it is desired to retain the sign
of the velocity, the complex difference image can be used
to form the composite image. The time frame projections
would be taken through the time frame phase images and
the normalizing projections would be taken through the
complex difference composite image.

HYPR time frames can have much higher SNR compared
with conventional filtered backprojection images pro-
duced with the same number of projections. Since the
projection information for the time frame is an integral of
signal and noise over a line (2D) or a plane (3D), SNR can
be greater than what would be calculated based on con-
sideration of individual time frame image elements. Be-
cause HYPR removes streak signal from the space between
vessels, the streaks (2D) or background haze (3D) from
angular undersampling will be reduced. The spreading of
signal from one vessel to another vessel will also be re-
duced by the first order approximation of spatially uni-
form temporal behavior. As emphasized above, all of these
applications must be evaluated in the context of particular
clinical applications and available SNR.

In the simulations presented here, it has been assumed
that the vessel distribution is spatially stationary. For ap-
plications in which motion can occur in the time series of
images, it might be possible to extend the HYPR technique
by using the information from the acquired projections to
correct for rotation and translation in the imaging scene (9)
so that the information in the individual time frames and
the training set can be aligned properly.

CONCLUSIONS

The HYPR method can be used to increase the SNR of time
frames or to reduce scan time for fixed time frame SNR and
artifact level in imaging scenes with high contrast and
sparse signal distribution, such as CE-MRA and PC imag-
ing. For 2D applications, our simulations indicate that
angular undersampling factors of 100 may be possible
within the limits of available SNR. Additional simulations
and in vivo experiments are required to verify that similar
behavior will be seen for 3D VIPR acquisitions, where
undersampling factors on the order of several hundred
may be possible. The degree of temporal waveform distor-
tion is likely to be significantly less for VIPR acquisitions
as compared with the 2D simulations. The HYPR tech-
nique can be applied to acquisitions using arbitrary k-
space trajectories for which projections can be synthesized
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from the acquired data but is ideally suited to radial ac-
quisitions where all k-space data are grouped into inter-
leaved projections.

APPENDIX A: SIGNAL TO NOISE RATIO
CONSIDERATIONS

In this Appendix we calculate the stochastic component of
the noise in the HYPR images, which is usually dominated
by the noise in the composite image.

The HYPR time frame image component associated with
a single projection is calculated as

Np-1

H=(1/N,) E [C*P,/P.] [A1]

where P, is a projection acquired during the time frame
and P, is the corresponding projection through the com-
posite image C, and the sum is calculated over all projec-
tions in the time frame. The total differential of H is given

by:

Np-1

=(1/N,) [E AC)*(P/P)+ >, (AP)*(C/P,)

+ 2 (AP)*(C*P/PY)]  [A2]
The signal in each time frame projection is given by P, ~
(N, * C) = P, where N, is the number of vascular pixels
included in the projection. The mean vascular signal is
assumed to be C. The noise in the composite image is the
same for each projection and will add coherently in each
voxel. The other noise components will add as uncorre-
lated noise samples. Correlation between the noise in PC
and C will be ignored. With these assumptions we get:

(AH)?=(1/N,)?*[(N,AC)2+ N, (AP,)** (C/P,)?

N,(AP.)**(C*P/P?)?*] [A3]
AP, is an average over the number of readout points in the
projection, usually 256, and is given by AP, = o/N,"?
where o is the noise per readout sample. The noise in the
composite image is an average over the number of projec-
tions per time frame N,,, the number of time frames Ny, and
the number of readout points N,, and is given by AC =
o/(N, N, N)*"?. The error in the projection through the
composite image is increased by the square root of the
number of pixels N ; in the projection, i.e., AP, =

( plx]l/z/(N N N )1 2

Substituting these values we obtain:

(AH)?*=(0*/N,N,N)*[1+N/N?+N,;,/(N,N?)]

pix

[A4]

The SNR for the HYPR time frame including all projec-
tions is then given by:

SNRyuypr=C(N,N, N9 "*/{o*[1+Ny/NZ+N_;/(N,N2)]"?)
[A5]
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=SNR /[1+Ny/N2+N,./(N,N) ]2 [A6]

composite
The first term in this sum is due to the error in the com-
posite image and usually determines the SNR. Using the
fact that the SNR in a filtered backprojection image is C (N,
Np)l/Z/(r, we can calculate the ratio of SNR for HYPR and
FBP images for various cases.

For the case of a 40-projection FBP image and a 30 frame
series of 40-projection HYPR images, we predict that
SNRyvpr = 5.2 SNRygp. This is approximately the square
root of the number of frames, which is a reflection of the
fact that SNR is dominated by the composite image, which
increases SNR at that rate. In Fig. 8 the simulations show
that the SNR for a 4-projection time frame from a 30 frame
HYPR series has a factor of 2 increase in CNR relative to
the 40 projection FBP image. Our equations predict a ratio
of 1.7 for this case based on purely stochastic noise con-
siderations. We presume the additional increase in CNR is
due to reduction of streak artifacts due to the greater num-
ber of projections in the composite image.

In the above calculation we have assumed that N, =
N, *fwhere fis a vascular sparsity factor representing the
fraction of voxels that are occupied by vessels. In the 2D
case using the VIPR MIP images for the simulation, this
value was 0.1. When MIP images are not used, we have
measured a sparsity factor of about 0.002. For this data set
there is a tradeoff between SNR and the accuracy of the
measured temporal waveforms depending on whether the
HYPR algorithm is applied to the MIP images or individual
slices, in which case the 0.002 factor would apply. For the
3D VIPR case, the 0.002 factor must be used since the
HYPR algorithm must be applied in each Radon plane. In
this case, waveform contamination should be significantly
reduced relative to the 2D MIP case.

For the 3D case, the equations predict that if we increase
our undersampling factor from the present PC VIPR value
of 50 to a value of 500 by decreasing the number of pro-
jections from 2000 to 200 in a 30 frame sequence, the SNR
of the 50 projection HYPR frames will be 1.7 times that of
our current 2000 projection images. This is in spite of the
additional factor of 10 increase in speed.

For applications such as phase contrast angiography
where there is no background signal, CNR predictions are
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identical to SNR predictions. CNR predictions have been
compared with the simulation due to the greater accuracy
of determining a stochastic noise estimate free of intravas-
cular velocity variations that would contribute to the esti-
mated noise.
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