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Off-Resonance Correction of MR Images
Hermann Schomberg,Member, IEEE

Abstract—In magnetic resonance imaging (MRI), the spatial
inhomogeneity of the static magnetic field can cause degraded
images if the reconstruction is based on inverse Fourier trans-
formation. This paper presents and discusses a range of fast
reconstruction algorithms that attempt to avoid such degra-
dation by taking the field inhomogeneity into account. Some
of these algorithms are new, others are modified versions of
known algorithms. Speed and accuracy of all these algorithms
are demonstrated using spiral MRI.

Index Terms—Conjugate phase reconstruction, magnetic reso-
nance imaging, off-resonance correction, simulated phase evolu-
tion and rewinding.

I. INTRODUCTION

M OST MRI methods generate their images in two steps.
First, the object to be imaged is subjected to an

MRI experiment of one kind or another and then the image
is reconstructed from the outcome of this experiment. The
reconstruction algorithm is designed to invert a mathematical
model of the experiment. Usually, the Fourier transform is
taken as the model and the reconstruction is done by a discrete
version of the inverse Fourier transform [1]–[5].

In practice, the assumed Fourier transform relationship be-
tween image and data is marred by a number of imperfections,
resulting in various kinds of image artifacts if the reconstruc-
tion is nevertheless based on inverse Fourier transformation.
One of the major imperfections is the spatial inhomogeneity
of the static magnetic field, which typically causes distorted
or blurred images. This paper presents and discusses a range
of fast reconstruction algorithms that attempt to avoid such
artifacts by inverting, approximately, an extended model of
the MRI experiment that takes the spatial inhomogeneity of the
static magnetic field into account. Some of these algorithms
are new, others are modified versions of algorithms devised by
to Noll et al. [6], [7], Man et al. [8], and Kadah and Hu [9].
Speed and accuracy of all these algorithms are demonstrated
using spiral MRI.

The paper is organized as follows: Section II presents the
extended model of the MRI experiment. Section III discusses
inversion strategies. Sections IV and V present the reconstruc-
tion algorithms. Section VI focuses on spiral MRI. Section VII
summarizes the test results. Section VIII concludes the paper
with a few remarks.

Notations: The symbols and C denote the sets of real
and complex numbers, respectively. The-fold Cartesian
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product of and C is denoted by and C , respectively.
An interval of the form is abbreviated by

. The notation : indicates a mapping (function)
with domain and range . The concatenation of two

mappings : and : is the mapping :
defined by . The partial derivative

of a differentiable function : with respect to the
th variable is written as . The Hilbert space of square-

integrable functions : C is denoted by .

II. A N EXTENDED MODEL OF THE MRI EXPERIMENT

Underlying the considerations in Sections II–V is a typ-
ical two-dimensional (2-D) MRI method implemented on a
typical MRI system [5]. We attach a right-handed, Cartesian

-coordinate system to the main magnet such that
the origin of this system lies in the isocenter of the main
magnet and the -axis is parallel to the main magnetic field.
Any direction perpendicular to the -axis is referred to as
transverse. The generalization to three-dimensional (3-D) MRI
methods is conceptually straightforward.

Prior to the MRI experiment, the object to be imaged (in
medical applications, the patient) is placed inside the bore of
the magnet. For simplicity we assume that the slice to be
imaged corresponds to the transverse plane . The spatial
variable in this plane is written as . The time
variable is denoted by. The object is supposed to stay at rest
during the experiment.

The experiment itself consists of a sequence of
subexperiments. All subexperiments have the same duration
(repetition time), the same structure, and follow immediately
upon each other. Each subexperiment, in turn, consists of an
excitation phase, a preparation phase, an acquisition phase,
and a recovery phase. When imaging a transverse slice, only a
transverse gradient field is used during the acquisition phase.
See, e.g., [5] for more information about MRI experiments and
the numerous variations possible.

The subexperiments are designed to be time-shift invariant.
So we can pretend that each subexperiment occurs in the same
time interval. We denote the beginning and the end of the
acquisition phase by and , respectively, so that

(1)

is the duration of the acquisition phase (acquisition time).
The (demodulated) MR signal acquired during the acquisition
phase of the th subexperiment is represented by a function

: C. Each MR signal is sampled at the time
points

(2)
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The outcome of the MRI experiment consists of the
complex numbers , , .

The transverse magnetization in the plane at the
beginning of the preparation phase is independent ofand

and conveniently described by a function : C,
whose real and imaginary parts correspond to the- and

-components of the transverse magnetization, respectively.
The support of is contained in some region in -space,
such as the square

(3)

or the disk

(4)

for some known . The magnitude of is closely
related to the proton density of the object, but also depends on
the MRI system and the experiment. The phase ofdepends
on various factors, but is often independent of the object.

By tracking the time evolution of the transverse magnetiza-
tion and modeling the signal reception process one can show,
similarly to the standard -space description of MRI [1]–[5],
that the functions and are related according to

(5)

where : C is a weighting function, : a
“frequency map,” : a path or trajectory in
so-called -space, and : C an error term. These
functions are further explained below.

The frequency map (also known as off-resonance map
or field map) is related to the strength of the static magnetic
field according to

(6)

where is the gyromagnetic ratio of protons [
MHz/T], the strength of the static magnetic field at,
and the demodulation frequency of the receiver. The
spatial variation of and, hence, is due to the slight
inhomogeneity of the applied static magnetic field and to
the spatially varying magnetic susceptibility of the object
[10], [11]. In medical MRI, is typically below
some 10 parts per minute (ppm) in. Moreover, varies
slowly and smoothly with position, except perhaps across the
boundaries between biological tissue and air [10]–[12]. The
factor of the integrand in (5) describes the off-
resonance effect resulting from the spatial inhomogeneity of
the static magnetic field during the acquisition phase. Changing

outside the support of does not affect the value of
the integral. We exploit this freedom to let quickly go to
zero outside the support of , making sure that has a
bounded support. A condition of this kind is needed for some
mathematical arguments at a later stage. For later purposes we

also define

(7)

(8)

The weighting function in (5) takes various system-,
method-, and object-dependent factors into account. If the MRI
method under consideration does not employ apulse during
the preparation phase, may be written as

(9)

where is a system- and method-dependent complex constant,
the duration of the preparation phase (preparation time),

and a complex-valued function that is closely related to
the sensitivity pattern of the receive coil [13]. The factor

in (9) accounts for the off-resonance effect during
the preparation phase. If the MRI method does employ a
pulse at time with , then the weighting
function changes to

(10)

where the sign depends on the axis of thepulse. We regard
the function

(11)

as the image of the object that is to be reconstructed from
the outcome of the experiment. The phase ofis usually
smooth and the support of equals the support of .
Most morphological information about the object is already
conveyed by .

The factor of the integrand in (5) captures the
effect of the transverse gradient field during the acquisition
phase of the th subexperiment. The trajectory is related
to the waveform : of this gradient field
by an equation of the form

(12)

where the initial value depends on the details of
the preparation phase. These initial values and the gradient
waveforms are chosen such that the trajectories fill a centered
region in space, such as the square

(13)

or the disk

(14)

for some known . [We let in analogy
to .] The grid points or sampling points
form a certain pattern in , the “sampling pattern.”

Finally, the function in (5) closes the gap between the
function on the left and its postulated integral represen-
tation on the right. Such a gap is caused by the numerous
idealizations underlying the derivation of (5). For example,
the derivation ignores relaxation effects, the chemical shift
between fat and water, the effects of eddy currents, and the
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-dependency of , , and . In addition, the MR signals
are cluttered by noise. (Yet is a function, not a random
variable.) The error term is unknown, but expected to be small.

Omitting the term under the integral sign
in (5) yields the standard -space description of the MRI
experiment, but also increases the error term.

MRI methods may be classified by their trajectories and
sampling patterns. In spin warp MRI [14] and its relatives,
the trajectories are chosen as straight equidistantly spaced
lines parallel to the -axis (for example) and the sampling
points form a Cartesian grid in . Similar grids arise
with blipped echo planar imaging (EPI) [15]–[17]. We refer to
all such methods as Cartesian MRI. In spiral MRI [18]–[20],
the trajectories are chosen as interleaved archimedian spirals
starting at the origin of -space, resulting in a spiral sampling
pattern in . In radial MRI [21], [22], the trajectories
are chosen as straight radial lines, resulting in a radial sampling
pattern in .

To facilitate the reasoning about inversion strategies and
reconstruction algorithms, it is advisable to extend the semi-
continuous equation (5) to a fully continuous equation between
functions in . As the first and major step toward this
end, we try to establish an operator in such that
(5) may be rewritten as

(15)

The standard -space description of MRI suggests to decom-
pose in the form

(16)

where is the 2-D Fourier transform as defined by

(17)

and is a perturbing operator that takes the off-resonance
effect into account. An equivalent decomposition of is

where is the identity operator in
.

To be able to define , we request that the MRI method
under consideration admit a “time map”: such
that

(18)

Such a time map exists if the trajectories do not intersect or, if
they do, all trajectories intersecting at a point visit that point at
the same time (time shift of the subexperiments understood).
Under these conditions, we can defineat the grid points

by (18) and then extendonto all of . The extension
is somewhat arbitrary, but usually there is a natural choice. For
mathematical convenience at a later stage, we letquickly go
to zero outside , making sure that has a bounded support.
Without loss of generality we may assume that

(19)

All major MRI methods do admit a time map. Even more,
many MRI methods, including the standard versions of Carte-
sian, spiral, and radial MRI, have natural time maps that may
be expressed in closed form. For example, the natural time
map of spin-warp MRI is

if
else.

(20)

In addition, the natural time maps of the standard versions of
Cartesian, spiral, and radial MRI are continuous in. Other
natural time maps, in particular those of some segmented
versions of blipped EPI [16], [17] or of ring-segmented spiral
MRI [23], are discontinuous in .

Assuming from now on the existence of a time map, we
define by the formula

(21)

The bounded supports of and make a compact operator
of the Hilbert–Schmidt type [24, ch. VI]. The sum
is then a linear continuous operator in and given by

(22)

It follows from (5), (18), and (22) that satisfies (15), as
desired.

As the second and minor step, we extend the MR data onto
all of -space by picking a function that satisfies

(23)

In addition, is to be well-behaved in between the sampling
points and to vanish outside.

It now follows from (15) and (23) that

(24)

where closes the gap between and and
satisfies

(25)

Equation (24) is the wanted fully continuous companion of (5).
The operator may be regarded as an extended model of the
MRI experiment and will be referred to as the MR transform.
Since is also compact, the Fredholm alternative holds
for as well as for [24, ch. VI].
Unlike the standard model, , the extended model depends
on the MRI system and the MRI experiment (viaand )
and even on the object (via). We write if we want
to emphasize this dependency. The values ofoutside have
no effect on the values of in so that our decision to
let go to zero outside does not affect the validity of the
model. Setting to zero outside is in line with our lack of
measurements outsideand the observation that , which
equals outside the support of, tends to zero as .

It is not strictly necessary that and have a bounded
support. For example, if and are arbitrary real con-
stants, then the function belongs
to

(26)
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In the standard approach to MRI, is taken as model and
reconstructed by computing a discrete approximation to
in , using the available samples ofin . It follows from
(16) and (24) that

(27)

which shows that the accuracy of the reconstruction is affected
by the size of as well as by the size of . The term
in (27) represents a continuous (as opposed to discrete) version
of the off-resonance artifact. The accuracy of the result is also
affected by the size of , the density of the sampling pattern in

, and the choice of the reconstruction algorithm. Henceforth,
an MR image reconstructed by inverse Fourier transformation
will be called a standard image.

Whether the off-resonance artifact present in a standard
image is acceptable depends on its size and nature. As is well
known, the off-resonance artifact manifests itself mainly as
distortion in Cartesian MRI [25] and mainly as blurring in
spiral and radial MRI [7]. While a moderate distortion may be
tolerable, blurring is generally not.

The size of the off-resonance artifact grows with bothand
. More precisely, the value of the expression equals

the number of extra turns made during the acquisition phase by
the transverse magnetization at a point with ,
relative to the transverse magnetization at a point with

. This number of extra turns can be significant.
For example, when T, ppm, and

ms, then .
It is always possible to reduce the size of by reducing
. However, according to (12), if the shape of the trajectories

and the size of are not to be altered, the reduction of
must be compensated for by an increase of the gradient

strength, which is possible only to a limited extent. When
this possibility is exhausted, one must shorten the lengths of
the trajectories in , which means that more trajectories are
needed to cover with the required density. In other words,
one is left with increasing the number of subexperiments. This,
however, increases the total duration of the MRI experiment,
which is generally undesirable.

Another approach for reducing the off-resonance artifacts
consists of computing a discrete approximation to

(28)

Since is compact, the spectrum of contains only
isolated eigenvalues with at most one accumulation point at

[24, Th. VI.15]. Therefore, exists unless 1
happens to be an eigenvalue of . Also, as a consequence
of the Fredholm alternative and the inverse mapping theorem,

is continuous if it exists [24]. Thus, as long as no
eigenvalue of is close to 1, the term in (28)
will not blow up and will be close to . Ideally, an
image reconstructed in this way would have no off-resonance
artifact.

For this approach the frequency and time maps must be
known. While the time map is known at least at the grid
points , an accurate estimate of the frequency map is
difficult to obtain. Fortunately, the -dependency of and

thus of [cf. (9)–(11)] makes it possible to extract a first
guess of from two standard images obtained with slightly
different preparation times [25]. The resulting frequency map
will be degraded by the off-resonance artifacts present in the
two standard images, but as long as these artifacts are small,
a frequency map obtained in this way may yet be usable. If
one is willing to spend the effort, one can reconstruct the two
images again, this time based on (28) and the current guess
of the frequency map, and extract an iterated frequency map
from the two newly reconstructed images. The process may
be continued. Nevertheless, in practice only some more or
less accurate estimate of the frequency map will be available.
As a result, an image reconstructed via (28) may still show
artifacts caused by the imperfections of the frequency map.

Once has been estimated andreconstructed, one can
also recover using (9) and (11) or (10) and (11), as
appropriate. Under a wide range of circumstances, the phase
of is independent of the object and once it has been
determined, one can exploit (9) and (11) or (10) and (11) to
extract an estimate of even from a single image.

III. I NVERTING THE MR TRANSFORM

In this section we study how one might design recon-
struction algorithms that compute a discrete approximation to

.
If were known explicitly, one could perhaps design

a reconstruction algorithm by discretizing the formula for
. Unfortunately, is not known in closed form. An

alternative approach consists of computing a discrete version
of where is an explicitly known near inverse of .

One such near inverse is . Approximating by
is akin to the standard approach to MRI. To discuss

the accuracy of this approach, we determine the point spread
function (PSF) of the operator , i.e., the function

: C such that

(29)

Using the explicit representations of and , one can
easily show that is given by

(30)
Inserting the series expansion

(31)

into the right-hand side (RHS) of (30) and interchanging the
order of summation and integration gives

(32)

The interchange is justified by the Lebesgue dominant con-
vergence theorem [24], which is applicable because, , and
the support of are bounded. Inspection of the RHS of (32)
suggests that as . On the other
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hand, when , then will generally be small
only in regions where . As a result, will be
close to in regions where is small, but in regions where

is not so small, will generally not be close to .
While the influence of on is local, the influence of is
nonlocal and more complicated. Still we can say that unless
or are very small, is not a good approximation to .

A much better approximation to is provided by the
conjugate operator given by the formula

(33)

The properties of are analogous to those of . Note that
if . The PSF of can be found like

that of and evaluates to

(34)

In contrast to , this PSF depends on the difference between
and . As a result, will be close to in

regions where varies slowly, even if is not close to zero
there. The influence of on is still local. If varies rapidly
in some region, this will spoil the quality of the approximation
only in that region. The influence of on is the same as
that on . We refer to computing as conjugate phase
reconstruction (CPR). This term was coined in [6] as an alias
for the weighted correlation method proposed by Maedaet al.
[26]. While the weighted correlation method was derived and
analyzed in discrete terms, it may also be seen as a method
for computing a discrete approximation to by means of a
matrix-vector product. However, since the matrix involved is
dense and has entries when the image has
pixels, the weighted correlation method is rather slow except
for small images.

In Section IV we shall present a range of fast CPR algo-
rithms. All these algorithms make use of an approximation of
the form

(35)

with suitable functions and . Substituting for and
for and setting

(36)

turns (35) into

supp (37)

Inserting (37) into (33) gives the approximation

(38)

where we have also used the fact that the function is
sensitive to the values of and only when supp
(because and the influence of is local) and when

(because was set to zero outside).

A discrete version of the RHS of (38) can serve as a CPR
algorithm. Different discretization strategies for the RHS of
(38) or different functions and in (35) will lead to different
CPR algorithms. Algorithms of this type can be arranged to
take advantage of the fast Fourier transform (FFT), which
makes them potentially faster than the weighted correlation
method.

If and are arbitrary real constants, we obtain a variant
of (38) by rewriting (33) as [cf. (26)]

(39)

The expression on the right may be approximated similarly
as the expression on the left, but now the approximation
(35) needs to be good for and

.
Another interesting near inverse of is given by

with . Computing a discrete
approximation to was proposed by Kadah and
Hu under the name simulated phase evolution and rewinding
(SPHERE) [9]. The PSF of is analyzed in
[9]. (Strictly speaking, the term SPHERE implies the usage
of an estimate of obtained from two standard images in
the usual way.)

In Section V we shall present a range of fast SPHERE
algorithms. The essential step of these algorithms is the
computation of with . The approximation
(37) now leads to

(40)

which is formally similar to (38).
A very accurate approximation to can be derived

from the work of Norton [27]. Assuming that and are
differentiable, this approximation reads

(41)
where

(42)

is the Jacobian of the transformation : defined
by . It follows from (33),
(41), and (42) that

(43)

Thus, computing can be reduced to three CPR’s. Ignoring
the derivative terms in (43) leads back to ordinary CPR.

Whenever we know a good near inverse of, we can
compute iteratively [28, Sec. 2.5]. With as near
inverse, the iteration reads

(44)

(45)

The initial step once again amounts to ordinary CPR. Each
subsequent step requires one CPR and one evaluation of

. This term may be computed similarly as in
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(40). Convergence is guaranteed if , where
denotes the operator norm in . We refer to the

algorithm (44), (45) as CPR with post-iteration. The algorithms
presented in Sections IV and V may also be used to implement
CPR with post-iteration.

A different class of algorithms for computing is
obtained by discretizing the equation and solving the
resulting linear systems of equations. It is also possible to solve
a discrete version of the equivalent equation

, which is a Fredholm integral equation of the second
kind for [29]. Methods of this kind are described in [30]. It
seems, however, that the resulting algorithms are slower than
the algorithms presented in this paper.

IV. FAST CPR ALGORITHMS

A. Preliminaries

From now on we assume thathas its support in
for some (large) integer and some (small) number .
For simplicity, is to be an “FFT-friendly” integer that
admits an FFT algorithm. We also assume thatis a subset
of . The grid formed by the sampling points
need not be Cartesian and, unless stated otherwise, we assume
that it is not. We can compute a standard image on a
Cartesian grid in with grid spacing using the
gridding method [31]–[33]. The procedure may be formulated
as

(46)

where C is the vector with components
, a discrete convolution operator, an FFT-

based discrete version of , a discrete weighting
function, and C the resulting standard image. We
regard the vectors occurring in (46) as “grid functions” and
and as operators acting on grid functions. Specifically,
the operator transforms , which is a discrete approximation
to on the non-Cartesian grid in, into a discrete approx-
imation to on a Cartesian grid in
with grid spacing where is an auxiliary window
function with a small support. The operator transforms
the output of this “gridding step” into a discrete approximation
to on the Cartesian grid
in . The grid function is a discrete approximation
to on the same grid. The juxtaposition of
and in (46) is understood as pointwise multiplication.

Finally, we assume that the region is so large and the
sampling pattern in so dense that the standard image is
not seriously degraded by truncation and aliasing errors. Also,
the errors in the data and the off-resonance effect should be so
small that the standard image is at least a crude approximation
of .

We wish to compute a grid function C that is a
discrete approximation to the RHS of (38) (or its variant for

) on the Cartesian grid in . An
estimate of the frequency map is needed on the same Cartesian
grid. Also needed is a safe estimate of the support of .
If the standard image is available and not too degraded, it

may be used to find an that is only a little larger than
supp . In the worst case, may have to be
chosen. The available estimates of suppand are then used
to estimate the numbers , , and defined in (7) and (8).
For simplicity, we shall use the symbols , , and also
for the respective estimates. The time map may or may not
be known in closed form.

B. Discretization Strategies

First we discuss three discretization strategies for the RHS
of (38) (or one of its variants), assuming that the integer
and the functions and in (35) and (36) have already been
chosen. Each discretization strategy leads to a different class
of algorithms.

The critical step is the discretization of the terms .
Since the functions and are certainly known on
the non-Cartesian grid in , we may use the gridding
method to compute . The resulting algorithms have
the general form

(47)

Here, C is a discrete version of , sampled on
the non-Cartesian grid in , and C is a
discrete version of , sampled on the Cartesian grid in

. Again, the juxtaposition of two grid functions on
the same grid in (47) is understood as pointwise multiplication.
The summation in (47) is also understood pointwise. (These
conventions also apply to similar formulas below.) Since

, the time map is not
explicitly needed. CPR algorithms based on this discretization
strategy were proposed by Nollet al. [6], [7].

To avoid all but one of the time consuming gridding steps,
Man et al. [8] suggested replacing in (47) by ,
where C is a discrete version of sampled on the
Cartesian grid in . The resulting algorithms have the
general form

(48)

(49)

It is now necessary to evaluate on the Cartesian
grid in . This is no problem if is known in closed
form. Otherwise, some form of interpolation must be used to
resample or from the non-Cartesian grid to the Cartesian
grid in . If the time map is discontinuous in, this
interpolation may incur an extra error.

The replacement of by creates some error,
too. As the gridding step is, in essence, a discrete version
of a convolution with a narrow window function, this error
is negligible when is smooth. However, is not always
smooth. For example, the natural time maps of spiral and
radial MRI (cf. Section VI) are not differentiable at
and this behavior carries over to. Some time maps are even
discontinuous in .
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To avoid this extra error, we suggest resamplingonto the
Cartesian grid in by first computing via (46) and
then

(50)

(51)

In (50), represents an FFT-based discrete version of.
Together, (46) and (50) effect a resampling of the MR data
from the non-Cartesian grid to the Cartesian grid in
[33]. The general algorithm (50), (51) acts on the standard
image and involves only Cartesian grids. When combined
with (46), it requires two 2-D FFT’s more than the general
algorithm (48), (49). In many situations, the standard image is
already available or needs to be computed anyway, and then
the extra cost reduces to a single 2-D FFT. Ifis continuous in

, then will also be continuous there and the resampling
of via (46) and (50) will be accurate. Conversely, ifis
discontinuous in , then will also be discontinuous there
and the resampling may of be inaccurate.

Discontinuous time maps (on non-Cartesian grids) remain
difficult to cope with. In the case of ring-segmented spiral MRI
or other segmented non-Cartesian MRI methods, one can still
apply an instantiation of one of the general algorithms (48) and
(49) or (50) and (51) to the data in each segment separately
and add the results. If there are many segments, algorithms
based on (47) may be faster.

C. The Algorithms

We now discuss possible choices for the functionsand
in (35). In principle, each choice can be combined with any of
the three discretization strategies described in Section IV-B.
The CPR algorithms presented in this paper, however, are all
based on (50) and (51).

In practice, one also needs some way of estimating the
number of terms, , from the data. For the moment, we suggest
choosing via a parameter in the form

(52)

the hope being that might become an algorithm-dependent
constant.

1) Discrete Frequency Exponential Approximation:A nat-
ural choice for the functions , proposed by Nollet al. [7],
are the discrete frequency exponentials

(53)

The frequencies and the companion functions are yet to
be determined.

One of the simplest choices for and , also indicated
in [7], is

(54)

if

else.
(55)

The associated functions are discontinuous and
define a partitioning of into the disjoint segments

(56)

The effect of the choice (55) is a sort of nearest neighbor in-
terpolation in (51). The algorithm (50), (51) with as in (53),

as in (54), and as in (55), will be referred to as algorithm
CPR-DFE-NN. (DFE stands for discrete frequency exponential
approximation, NN for nearest neighbor interpolation.)

The image quality offered by algorithm CPR-DFE-NN may
be hampered by the discontinuity of the functions. (Spiral
MRI is an important exception, see Sections VI and VII). The
following choice, due to Manet al. [8], avoids this problem.
Let and be two parameters subject to

(57)

Also let

(58)

(59)
Similarly, let

(60)

(61)
Then for each define : C by

(62)

where : is a window function such as

if

if

if .

(63)

Note that when . For each
we wish to approximate in by a trigono-

metric polynomial of the form

(64)

Suitable coefficients can be found by trigonometric
interpolation, i.e., by requesting that

(65)

In view of (57)–(62) and (64), this may be rewritten as

(66)
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The coefficients are then given by [34]

(67)

In practice, one calculates the coefficients for a finely
spaced set of frequencies and uses interpolation
to find them at intermediate values of. It can be deduced
from (67) that

(68)

(69)

It therefore suffices to compute only for the in one
of the frequency bins . Unless happens to be FFT-
friendly, the sum (67) cannot be evaluated via an FFT but, in
practice, is so small that a direct evaluation via (67) is fairly
fast. To achieve a good approximation in (35) with a small

, the choice of and is both essential and critical (cf.
Section VII). The algorithm (50), (51), with as in (53),
as in (59), and as in (67), will be referred to as CPR-DFE-T.
(T stands for trigonometric interpolation.)

2) Discrete Time Exponential Approximation:We obtain
dual algorithms if we interchange the roles ofand . The
functions are then discrete time exponentials,

(70)

and the times and the companion functions are still
to be determined. If we choose them in analogy to (54)
and (55), we obtain algorithm CPR-DTE-NN (DTE stands
for discrete time exponential approximation.) A version
of algorithm CPR-DTE-NN based on (47) was proposed
by Noll et al. [6]. The analogs of the choices (57)–(67)
lead to algorithm CPR-DTE-T.

3) Polynomial Approximation:It was pointed out in [8]
that the functions might also be chosen as polynomials in,
although suitable companion functionswere not exhibited.
It was also demonstrated that discrete frequency exponentials
are nearly optimal. Nevertheless, polynomial approximation
can lead to an attractive CPR algorithm, as we shall now show.

The algorithm to be presented turns out to be fastest when it
works with centered versions ofand . These are defined by

(71)

with and as in (58) and (60), respectively. With the
further definitions

(72)

we have

(73)

as a special case of (39). Due to the centering, we further have
if and if

. As a result, we now need to find functionssuch that

(74)

We propose to let with real coefficients
and yet to be determined. This choice makes the

function a polynomial in the single variable .
Moreover, due to the centering, when

and . So now we seek real
coefficients and such that

(75)

To find such coefficients, we determine the real polynomial
that interpolates the function

at the zeroes of the transformed Chebyshev poly-
nomial in the interval
where is the standard Chebyshev polynomial of degree
and . The polynomial
is easy to compute and affords nearly the same accuracy
in as the minimax polynomial of the same
degree [28, Secs. 5.8–5.10]. The coefficientsare found
similarly by interpolating . Since the interval

is centered and the function is even,
the coefficients are zero when is odd. Similarly, the
coefficients are zero when is even. The number of terms
required to achieve a prescribed accuracy in (75) increases
with the size of the interval in which the approximation must
be good. Centering and minimizes the size of this interval
and also centers it.

The resulting algorithm may be stated as follows:

(76)

(77)

(78)

(79)

Here, , , , and are discrete versions of the
functions , , , and , respectively, sampled on the
pertinent Cartesian grids. The algorithm (76)–(79) with the
above choice of the coefficients will be referred to as algorithm
CPR-P (P stands for polynomial approximation).

For large values of and , the summations and multipli-
cations in (77) and (78) involve numbers of grossly different
orders of magnitude. In such cases, algorithm CPR-P may
suffer from a loss of accuracy due to rounding errors.

Interchanging the roles of and in (74) does not lead to
a new algorithm.

D. Miscellaneous Remarks

The accuracy of the above algorithms depends on the
accuracy of the approximation in (35) or (75). This accuracy,
in turn, depends on the choice of the functionsand and
will generally increase with . The number of terms necessary
to achieve a prescribed accuracy will also grow with .
Different algorithms may well produce different artifacts. The
accuracy of the resulting images will also be affected by the
accuracy of the available frequency map.
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The computational effort for computing one of the terms
in the sums (51) or (77) and (78) is dominated by the effort
for computing a 2-D complex FFT. Thus, the computational
complexity of these algorithms is mainly determined by the
number of terms required for the desired accuracy. The op-
eration count may be reduced a little by means of a binary
mask indicating the region . Such a mask is also useful to
suppress artifacts that may arise when the estimated frequency
map is grossly false and nonzero outside.

In principle, the CPR algorithms presented in Section IV-
C may be applied to Cartesian MRI as well. The initial
resampling of the MR data onto a Cartesian grid in
is then unnecessary. Also, there is no need to resample the
time map when it is not known in closed form. The standard
image will be distorted and, if the frequency map is obtained
in the usual way, it will be distorted as well. Algorithm CPR-
DFE-NN is not usable with Cartesian MRI, as it shifts the
segments defined in (56) by different amounts, thus leaving
the boundaries between the segments visible. The fact that the
time map of a Cartesian MRI method depends only on
(or ), may be used to speed up the computation of the 2-D
FFT’s involved.

V. FAST SPHERE ALGORITHMS

Every CPR algorithm presented in Section IV-C has a
SPHERE counterpart. The general form of these algorithms
is [cf. (40)]

(80)

(81)

Like the CPR algorithms of Section IV-C, these algorithms act
on and work with Cartesian grids throughout. The functions

and may be chosen in the same way as in Section IV-
C. Specifically, if , , and are chosen as in (53)–(55),
respectively, we obtain algorithm SPH-DFE-NN, the SPHERE
counterpart of CPR-DFE-NN. Algorithms SPH-DFE-T, SPH-
DTE-NN, SPH-DTE-T, and SPH-P arise similarly. Algorithm
SPH-DFE-NN leaves the boundaries between the segments
defined in (56) visible and is not usable. Algorithm SPH-DTE-
NN was first described in [9].

Assuming the same number of terms, the computational
complexity of all these SPHERE algorithms is similar to that of
their CPR counterparts. Most remarks made in Section IV-D
carry over.

After a change of the sign of and without the final inverse
Fourier transformation, these SPHERE algorithms are also
suited to compute the term in (45).

VI. A PPLICATION TO SPIRAL MRI

The trajectories of spiral MRI [18]–[20] are interleaved
archimedian spirals covering the disk . The trajec-
tories may be written as

(82)

Fig. 1. (a) The function � defined in (85) and its inverse, �1
�

. In this
example,� = 0:125. (b) The associated time map, as defined in (84).

where : C is defined by

(83)

and : is a smooth monotonically increasing
function with and . The natural time map is

if
else.

(84)

A good choice for is [5, Sec. 3.6]

(85)

in which case the sampling density in is adequate
when . Fig. 1(a) illustrates the functions
and for . Fig. 1(b) shows the resulting natural
time map.

The functions and are real and rotationally sym-
metric. In regions where varies slowly, the rotational sym-
metry of shapes the PSF (32) of in a way
that makes a blurred version of , where the amount
of blur near grows with and . The blurring of the
standard image makes it possible to obtain a good yet safe
estimate of supp.

The algorithms described in Sections IV and V may be used
to deblur standard spiral MRI images. Despite the discontinuity
of its coefficient functions, algorithm CPR-DFE-NN is appli-
cable to spiral MRI, because the small amount of remaining
blur tends to obscure the boundaries between the segments
defined in (56).

Furthermore, algorithm CPR-P may be speeded up consid-
erably, provided and the phase of are reasonably smooth
(which they usually are). We can formulate the requirement
for as

(86)

where the functions , , , and are real and

(87)

for some low-pass filter , such as

(88)



490 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 6, JUNE 1999

For the fast version of algorithm CPR-P, let, , , , and
be defined as in Section IV-C-3. The algorithm exploits

the fact that the function

(89)

is computable from and satisfies

(90)

We first show that is computable from . Since
near the origin of space, we have

(91)

(92)

(93)

So is computable from . All other terms in (89)
are either known or also computable.

To demonstrate (90), we note that

(94)

(95)

(96)

(97)

(98)

The crucial step here is the transition from (95) to (96),
which is based on an interchange of the order of the mul-
tiplication with and the application of the operator

. The error resulting from this interchange is small
because is smooth by assumption and the PSF of

(99)

(100)

is concentrated where .
Now we show that can be computed efficiently. Like

any other complex-valued function, admits the representa-
tion

(101)

with the Hermitian functions

(102)

Exactly as described in Section IV-C3, we can find an integer
and real coefficients , such that when is

odd, when is even, and

(103)

Substituting (101) into the RHS of (103) gives

(104)

with

(105)

(106)

The functions and are real because the coefficients
and are real, is real, and are Hermitian, and

is real and rotationally symmetric (and hence Hermitian).
Since must be nearly real, and must be nearly
zero and

(107)

Combining all these observations leads to the following
algorithm for computing a discrete approximationto
from :

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

Here, and are discrete versions of and ,
respectively, is an FFT-based discrete version offor
real input data and Hermitian output data [28], and
is an FFT-based discrete version of for Hermitian input
data and real output data. In (110), denotes the complex
conjugate of , denotes pointwise magnitude, is
an approximation to , and is an approximation to

. We refer to this variant of algorithm CPR-P as CPR-P-r,
as it relies on the rotational symmetry of the time map.

The advantage of algorithm CPR-P-r over the original
version is that can be made nearly two times faster than

. Part of this gain, however, is lost by the computational
effort for (109)–(112). Due to the additional approximations
involved, algorithm CPR-P-r may not be quite as accurate
as algorithm CPR-P. It has been found experimentally that
the range of acquisition times for which algorithm CPR-P-r
provides good results can be extended by subtracting
from the in (110) and adding to the in (115).

To some extent, it is possible to deblur spiral MRI im-
ages without explicit knowledge of a frequency map. The
starting point for such methods is algorithm CPR-DFE-NN.
The functions required for this algorithm are not known
initially, but can be guessed by an iterative procedure based
on the assumption that in (86) should be real. Deblurring
algorithms of this kind are described in [7] and [35].
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Fig. 2. (a) and (e) Standard spiral MR images of a phantom. (b) and (f) Estimated field maps. (c) and (g) Best possible CPR images. (d) and (h) Best
possible SPHERE images. The associated acquisition times are 20 ms (top row) and 40 ms (bottom row).

Algorithm CPR-P-r and the mentioned deblurring algo-
rithms are also applicable to radial MRI. The natural time
map of radial MRI is given by (84) with .

VII. T EST RESULTS

The various reconstruction algorithms presented in
Sections IV–VI were tested on standard images of a phantom.
The phantom consisted of a cylindrical plastic container
filled with NaCl- and CuSO-doped water. A 2-D array of
thin plastic rods served to make “holes” in the water. A
cross-sectional slice of this phantom was imaged in a series
of MRI experiments. The MRI system was a 1.5 T Philips
Gyroscan NT equipped with shielded gradient coils. The
phantom was positioned in the center of the bore with its
longitudinal axis parallel to the axis of the magnet. The MR
data were acquired with an ordinary spiral pulse sequence,
using a standard excitation pulse and nopulse during the
preparation phase. In all cases, the flip angle of the excitation
pulse was 45, the slice thickness 8 mm, and the repetition
time 100 ms. The acquisition time,, was either 10, 20, 40,
or 60 ms. The number of spirals, , was set to 36, 18, 9,
or 6, respectively. The spirals were chosen as described in
Section VI with mm, , and . In all
cases, the maximum gradient strength and the maximal slew
rate were 16.40 mT/m and 31.48 mT/m/ms, respectively. The
number of samples per acquisition,, was set to in
all cases. For each acquisition time, two MRI experiments
with preparation times ms and ms were made.

Using a phantom has the advantage that its true image is
known. The above experimental setup also ensures that the
error term in (5) is relatively small. As the true frequency
map is the same in all cases, the size of the off-resonance
effect is solely determined by the size of.

All postprocessing of the MR data was done on a Sun
Microsystems Sparcstation 20. The computer programs were
written in C, using single precision floating point arithmetic

throughout. Computation times were measured by calling the
standard C-library function clock() at the beginning and the
end of the program. The resulting computation times include
the overhead caused by the operating system. A 2-D 256
complex FFT takes about 0.5 s on this platform.

In all cases, the image size was and the pixel
size mm. Standard images of the phantom were
reconstructed using an adaptation of the general gridding
method described in [33] to spiral MRI. The implementation
achieves a reconstruction time of about 3.7 s per image.
Fig. 2(a) and (e) shows the standard images at ms and
at ms, respectively. As expected, the amount of blur
grows with . At ms there is also some distortion near
the top of the phantom. The standard images at ms
and ms continue the trend in the respective directions
and are not shown here. To obtain a sharp standard image of
this phantom with this MRI system, an acquisition time of
5 ms or less is required.

Frequency maps were extracted from the two standard im-
ages acquired at each acquisition time. The procedure involves
a phase unwrapping step, a masking step to set the frequency
map to zero outside the estimated support of the image, and
a 2-D median filter. The computation of a frequency map
takes about 2.4 s, excluding the reconstruction time for the
two standard images. Fig. 2(b) shows the estimated frequency
map at ms. The minimum and maximum frequencies
within the estimated support of the image are

Hz and Hz, resulting in a frequency
span of Hz. The estimated frequency map at

ms is shown in Fig. 2(f) and has a frequency span
of Hz. The two frequency maps are almost
identical inside the phantom but differ near its boundary.
Again, the frequency maps estimated at ms and

ms continue the trend in the respective directions
and are not shown here.

For each acquisition time, the standard image obtained with
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a preparation time of 2 ms was postprocessed with each of
the CPR algorithms presented in Sections IV and VI, using
the frequency map associated with the same acquisition time.
Here is a summary of the findings.

As expected, the images produced by the various CPR
algorithms become better as increases. At each acquisition
time, there is even a best possible CPR image that most of
these algorithms are able to produce if onlyis large enough.
At ms and ms, the best possible CPR images
are practically free of blur and distortion. At ms and

ms, some blur and distortion remains near the top
and the bottom of the phantom. Fig. 2(c) and (g) shows the
best possible CPR images at ms and at ms,
respectively. As usual, the best possible CPR images at
ms and ms continue the trend in the respective
directions. However, at ms the remaining artifacts
near the top of the phantom are so large that one is inclined
to call them unacceptable.

On the other hand, there are substantial differences between
the various CPR algorithms with respect to their behavior as

grows from small to large. For example, algorithm CPR-
DFE-NN, when is small, produces images that are still
a bit blurred. As increases, the images converge slowly
but steadily toward the best possible CPR image. Algorithm
CPR-P exhibits a totally different behavior. Whenis below
some threshold value (which depends on and presumably
on ), the images produced by this algorithm show low-
frequency wavy artifacts. As grows beyond the threshold

, these artifacts disappear completely and the resulting
images converge very rapidly to the best possible CPR image.
Algorithm CPR-DFE-T exhibits a similar but less pronounced
threshold behavior. The proper choice of the parameters
and in (57)–(61) is critical for the performance of this
algorithm. As and are related via (57), it suffices to
choose only one of them. A good recipe, found experimentally,
is to set where is either or

and chosen such that is odd. (Among
other things, this choice ensures thatand are among the

.) Algorithm CPR-DTE-NN requires extremely many terms
to produce images that come close to the best possible CPR
image. Algorithm CPR-DTE-T behaves roughly like algorithm
CPR-DFE-T. However, a simple rule for deriving good choices
of the parameters or from or could not be found.
Finally, algorithm CPR-P-r produces good magnitude images
at ms and ms, but not at ms and

ms. Fig. 3(a) and (b) shows the best possible images
produced by this algorithm at ms and at ms,
respectively. The choice of the parameter in (88) is not
critical: a good choice is .

The four SPHERE algorithms SPH-DFE-T, SPH-DTE-NN,
SPH-DTE-T, and SPH-P were also tested. Again, there is
a best possible SPHERE image for each acquisition time.
However, except at ms, the image quality of the
best possible SPHERE images is noticeably inferior to that of
the best CPR images obtained at the same. Fig. 2(d) and (h)
shows the best possible SPHERE images at ms and at

ms, respectively. Otherwise, the SPHERE algorithms
behave roughly like their CPR counterparts.

In practice, one wants to compute a reasonably good CPR or

Fig. 3. (a) Best possible image produced by algorithm CPR-P-r atT = 20

ms. (b) Best possible image produced by algorithm CPR-P-r atT = 40 ms.
(c) Iterated frequency map atT = 40 ms. (d) Best possible CPR image at
T = 40 ms, recomputed with the iterated frequency map shown in (c).

SPHERE image as fast as possible. Thus, for each algorithm
and acquisition time, an attempt was made to find out the
number of terms required for a reasonably good CPR or
SPHERE image, respectively. Table I lists the results for each
acquisition time and for each algorithm that could produce a
reasonably good image at this acquisition time. The columns
labeled list the number of terms required for the reasonably
good image. The associated computation times are listed in the
adjacent columns. The goodness of an imagewas measured
by the relative error where denotes
pointwise magnitude, denotes the Euclidean norm in
C , and is the pertinent best possible CPR or SPHERE
image. Table I also lists the relative error in each case. The
best possible CPR and SPHERE images were computed by
algorithms CPR-DFE-T and SPH-DFE-T, respectively, using a
very large number of terms. As the above measure of goodness
is sometimes misleading, it was combined with a subjective
judgment based on visual inspection. The step behavior of
the P-class algorithms makes it easy to identify the number
of terms required for a reasonably good CPR image. For the
T-class algorithms, which have a less marked step behavior,
this number of terms is less well defined and remains a little
ambiguous. For the table, the smallest possible number was
selected. For the best image quality, one or two more terms
are needed. For the two DFE-T algorithms the parameter
was chosen as described above. For the two DTE-T algorithms
good values for were determined by trial and error. For
the NN-class algorithms, which exhibit no step behavior at
all, the number of terms was chosen via (52) with
for algorithm CPR-DFE-NN and for the two DTE-
NN algorithms. These choices provide a good compromise
between image quality and computation time.

At ms and ms, the table contains the results
for the three algorithms CPR-DFE-NN, CPR-DFE-T, and
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TABLE I
TEST RESULTS

CPR-P only. At these acquisition times, algorithm CPR-P-r
and all SPHERE algorithms were unable to produce acceptable
images at all, algorithm CPR-DTE-NN was definitely too slow,
and algorithm CPR-DTE-T was discarded because it lacks
a known practicable way to determine good values for its
parameters.

With respect to image quality per number of terms, algo-
rithms CPR-DFE-NN, CPR-DFE-T, and CPR-P are clearly the
best among the tested CPR algorithms. Algorithm CPR-P-r is
the fastest, but restricted to images with small and medium
size off-resonance artifacts. At ms, algorithm CPR-P
begins to suffer from rounding errors, but in this regime the
CPR approach, as such, is already of limited value. Among
the SPHERE algorithms, algorithm SPH-P is the clear winner.

The table also lists the quantity , which is the
maximum value of the parameterthat would produce via
(52). The results suggest that might be chosen as in (52),
where depends on the algorithm and is otherwise constant or
a slowly varying function of that may be predetermined
and tabulated.

An attempt was made to improve the best possible CPR
image at ms by using an iterated frequency map, as
indicated at the end of Section II. Fig. 3(c) and (d) shows the
iterated frequency map and the recomputed best possible CPR
image, respectively. The distortion near the top of the phantom
has disappeared, but some ripples remain.

CPR with post-iteration was also tried, but did not yield
satisfactory results. In hindsight, this may be understood. The
iteration attempts to change the image at places where CPR by
itself is not very accurate, but these are also the places where
the frequency map is likely to be inaccurate.

The better of the CPR algorithms were also applied to a
standard spiral MR image of a transverse cross section of a
human brain. To obtain this image, the excitation phase of the
pulse sequence was augmented by a standard fat suppression
technique [36]. The flip angle of the excitation pulse was now
60 , the slice thickness 7 mm, the acquisition time ms,
and the repetition time 1000 ms. The number of spirals was

Fig. 4. (a) Standard spiral MR image of a human brain obtained atT = 20

ms. (b) Associated frequency map. (c) Best possible CPR image. (d) Best
possible SPHERE image. (e) Iterated frequency map. (f) Best possible CPR
image recomputed with the iterated frequency map shown in (e).

set to , resulting in a maximum gradient strength of
about 20 mT/m. Again, the image size was and
the pixel size mm. The standard image is shown in
Fig. 4(a). The associated estimated frequency map is shown
in Fig. 4(b). Its frequency span is Hz so that

. The variation of the frequency map in and
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near the nasal cavities is extreme. The best possible CPR
and SPHERE images associated with this frequency map are
shown in Fig. 4(c) and (d), respectively. The improvement of
the CPR image near the eyes and at the back of the head
is noticeable. Again, the appearance of the SPHERE image
is less satisfactory than that of the CPR image. Both images
have also changed significantly in and near the nasal cavities,
but given the strong variation of the frequency map there,
the accuracy of the images in this region may be questioned.
Fig. 4(e) and (f) shows the iterated frequency map and the
recomputed best possible CPR image, respectively. The image
has changed in and near the nasal cavities, but its accuracy
there remains doubtful.

VIII. C ONCLUDING REMARKS

The results reported in this paper suggest that the approx-
imate inversion of the MR transform via CPR is a viable
method to remove off-resonance artifacts from standard spiral
MR images. The approach allows one to reduce the number
of spirals by a factor between four to eight and still obtain
sharp spiral MR images.

The three CPR algorithms CPR-DFE-NN, CPR-DFE-T,
and CPR-P can be recommended. Algorithm CPR-P-r is
appropriate when speed counts most.

The results also suggest that the approximate inversion
of the MR transform by SPHERE is less accurate than an
approximate inversion by CPR, at least in the case of spiral
MRI. For Cartesian MRI the situation may be different, as
SPHERE may be able to make a better use of distorted
frequency maps [9].

The recommendable CPR algorithms are so fast that they
may be executed in real time on a suitable embedded parallel
computer comprised of a small number of state-of-the-art
microprocessors or digital signal processors.

The required frequency map can be estimated from two
standard images in the usual way. In favorable cases, it
is conceivable to extract the frequency map from a single
standard image. Improved frequency maps may be obtained
iteratively, although the computational cost is high. Theoreti-
cally, the approximation underlying the CPR approach could
be overcome in various ways, but in practice the difficulty of
obtaining an accurate frequency map limits the value of such
attempts.
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Roubine, Ed. Berlin, Germany: Springer-Verlag, 1970, pp. 316–347.

[30] Y. M. Kadah and X. Hu, “Algebraic reconstruction for magnetic
resonance imaging underB0 inhomogeneity,”IEEE Trans. Med. Imag.,



SCHOMBERG: OFF-RESONANCE CORRECTION OF MR IMAGES 495

vol. 17, pp. 362–370, June 1998.
[31] W. N. Brouw, “Aperture synthesis,” inMethods in Computational

Physics,B. Alder, S. Fernbach, and M. Rotenberg, Eds. New York:
Academic, 1975, vol. 14, pp. 131–175.

[32] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Se-
lection of a convolution function for Fourier inversion using gridding,”
IEEE Trans. Med. Imag.,vol. 10, pp. 473–478, Sept. 1991.

[33] H. Schomberg and J. Timmer, “The gridding method for image recon-
struction by Fourier transformation,”IEEE Trans. Med. Imag.,vol. 14,

pp. 596–607, Sept. 1995.
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