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Off-Resonance Correction of MR Images

Hermann Schombergviember, IEEE

Abstract—In magnetic resonance imaging (MRI), the spatial product ofIR and C is denoted byR™ and C", respectively.
inhomogeneity of the static magnetic field can cause degraded An interval of the form{z € R|a < x < b} is abbreviated by
images if the reconstruction is based on inverse Fourier trans- [a, b]. The notationf: X — Y’ indE:ate_s a mapping (function)

formation. This paper presents and discusses a range of fast : . ?
reconstruction algorithms that attempt to avoid such degra- J with domain X and rangeY". The concatenation of two

dation by taking the field inhomogeneity into account. Some Mappingsf: X — Y andg: Y — Z is the mappingy o f:

of these algorithms are new, others are modified versions of X — Z defined by(gof)(x) = g(f(z)). The partial derivative
known algorithms. Speed and accuracy of all these algorithms of a differentiable functionf: IR* — IR with respect to the
are demonstrated using spiral MRI. jth variable is written a®); f. The Hilbert space of square-

Index Terms—Conjugate phase reconstruction, magnetic reso- integrable functionsg:: R™ — C is denoted byl.-(R"™).
nance imaging, off-resonance correction, simulated phase evolu-
tion and rewinding.

Il. AN EXTENDED MODEL OF THE MRI EXPERIMENT

Underlying the considerations in Sections II-V is a typ-
ical two-dimensional (2-D) MRI method implemented on a

OST MRI methods generate their images in two stepgpical MRI system [5]. We attach a right-handed, Cartesian

First, the object to be imaged is subjected to afx,, z,, z3)-coordinate system to the main magnet such that
MRI experiment of one kind or another and then the imagfe origin of this system lies in the isocenter of the main
is reconstructed from the outcome of this experiment. Thgagnet and thes-axis is parallel to the main magnetic field.
reconstruction algorithm is designed to invert a mathematicahy direction perpendicular to thes-axis is referred to as
model of the experiment. Usually, the Fourier transform igansverse. The generalization to three-dimensional (3-D) MRI
taken as the model and the reconstruction is done by a discrefgthods is conceptually straightforward.
version of the inverse Fourier transform [1]-[5]. Prior to the MRI experiment, the object to be imaged (in

In practice, the assumed Fourier transform relationship bewedical applications, the patient) is placed inside the bore of
tween image and data is marred by a number of imperfectioftse magnet. For simplicity we assume that the slice to be
resulting in various kinds of image artifacts if the reconstrugmaged corresponds to the transverse plane- 0. The spatial
tion is nevertheless based on inverse Fourier transformati@ariable in this plane is written a& = (z1, z2). The time
One of the major imperfections is the spatial inhomogeneiariable is denoted by. The object is supposed to stay at rest
of the static magnetic field, which typically causes distorteguring the experiment.
or blurred images. This paper presents and discusses a rangkhe experiment itself consists of a sequenceMf> 1
of fast reconstruction algorithms that attempt to avoid sugubexperiments. All subexperiments have the same duration
artifacts by inverting, approximately, an extended model @fepetition time), the same structure, and follow immediately
the MRI experiment that takes the spatial inhomogeneity of tion each other. Each subexperiment, in turn, consists of an
static magnetic field into account. Some of these algorithragcitation phase, a preparation phase, an acquisition phase,
are new, others are modified versions of algorithms devised &yd a recovery phase. When imaging a transverse slice, only a
to Noll et al. [6], [7], Man et al. [8], and Kadah and Hu [9]. transverse gradient field is used during the acquisition phase.
Speed and accuracy of all these algorithms are demonstrage@, e.g., [5] for more information about MRI experiments and
using spiral MRI. the numerous variations possible.

The paper is organized as follows: Section Il presents theThe subexperiments are designed to be time-shift invariant.
extended model of the MRI experiment. Section Ill discuss&® we can pretend that each subexperiment occurs in the same
inversion strategies. Sections IV and V present the reconstrtitme interval. We denote the beginning and the end of the
tion algorithms. Section VI focuses on spiral MRI. Section Vlhcquisition phase by_ andr,, respectively, so that
summarizes the test results. Section VIII concludes the paper
with a few remarks. T=mp -7 (1)

Notations: The symbolsIR and C denote the sets of real.

. , is the duration of the acquisition phase (acquisition time).
and complex numbers, respectively. Thefold Cartesian The (demodulated) MR signal acquired during the acquisition
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The outcome of the MRI experiment consists of th&N also define
complex numbers,,(t,), 0 < m < M,0<n < N.

The transverse magnetization in the plang= 0 at the w-= min wx),  wp= max  wx), (7)
beginning of the preparation phase is independent.cdind
t and conveniently described by a functidd, : R? — C, D=wy —w_. (8)

whose real and imaginary parts correspond to the and

o . The weighting functionW in (5) takes various system-,
r2-components of the transverse magnetization, resp(:"cwerh/éthod— and object-dependent factors into account. If the MRI
The support ofA/, is contained in some regioR in x-space, ' '

method under consideration does not employ @ulse during
such as the square . )
the preparation phasél may be written as

Ro(rmax) = {x € R [@1], [#2] < Pomax}t ®3) W(x) = cOrc(X)C_m(x)Tp )

or the disk wherec is a system- and method-dependent complex constant,
T, the duration of the preparation phase (preparation time),
. _ 2 2 2\1/2 . p . :
Ro(rmax) = {x € R [(21 +23)"" < rmax} (4)  and C.. a complex-valued function that is closely related to

f K ] 0. Th itude off: is closel the sensitivity pattern of the receive coil [13]. The factor
Or SOme KNOWN e > 0. The magnitude ofil, 1S closely — _ivoz, iy (9) accounts for the off-resonance effect during

related to the proton density of the object, but also dependsf?lré reparation phase. If the MRl method does emplov a
the MRI system and the experiment. The phas&/of depends brep P ) ploy

. . . . ulse at timer_ — T with 0 < T < T},, then the weightin
on various factors, but is often independent of the object. pu'se <A< ghting
: . . ._function changes to
By tracking the time evolution of the transverse magnetiza-

tion and modeling the signal reception process one can show, W(x) = +¢ CrC(x)eiw<X><Tr2Tw> (10)
similarly to the standardk-space description of MRI [1]-[5], ] )
that the functionss,,, and M, are related according to where the sign depends on the axis of thpulse. We regard

the function
$m(t)
— 11,74 M —iw(x)(t—7_) ,—ix-Pm (t) d . t ) ) )
RZ ()Mo (x)e © x+em(t), as the image of the object that is to be reconstructed from
0<m< M, telr_,r,] the outcome of the experiment. The phase fofs usually
(5) smooth and the support of equals the support of\/, .
Most morphological information about the object is already
whereW: IR* — C is a weighting functionw: R* — R a conveyed by|f|. _ _
“frequency map,”pnl: [7-_7 7—+] — R2 a path or trajectory in The faCtOf@izx'pm(t) of the Integrand n (5) captures the
so-calledk-space, and,,,: [7_, ;] — C an error term. These effect of the transverse gradient field during the acquisition
functions are further explained below. phase of thenth subexperiment. The trajectopy,, is related
The frequency map (also known as off-resonance mago the waveformG.,,: [r—, 71] — IR* of this gradient field
or field map) is related to the strength of the static magnefiy an equation of the form
field according to

f=WM, (11)

Pm(t) = Pm(72) —|—’y/l G, (t) dt’, telr—, 7+] (12)
w(x) = vB(x) — wrr (6) r,

. . . _ where the initial valuep,,(7—) depends on the details of
where~ is the gyromagnetic ratio of protons f(2r) = 42.6 preparation phase. These initial values and the gradient

MHz/T], B(x) the strength of the static magnetic f|_e Id>at waveforms are chosen such that the trajectories fill a centered
and wrr the demodulation frequency of the receiver. The

spatial variation of B and, hencew is due to the slight region 5 in k space, such as the square

inhomogeneity of the applied static magnetic field and to Su(Fmax) = {k € R?| |k |, |k2| < max) (13)

the spatially varying magnetic susceptibility of the object .

[10], [11]. In medical MRI, |w(x)/wrr| is typically below OF the disk

some 10 parts per mi_nute (ppm) R. Moreover,w varies So(Fmax) = {k € R | (k2 +k§)1/2 < oo} (14)
slowly and smoothly with position, except perhaps across the

boundaries between biological tissue and air [10]-[12]. THer some known?,,., > 0. [We letk = (&, k2) in analogy
factor e~ ®)(*=7-) of the integrand in (5) describes the offto x = (1, x2).] The grid points or sampling points,, (t,,)
resonance effect resulting from the spatial inhomogeneity fofrm a certain pattern i, the “sampling pattern.”

the static magnetic field during the acquisition phase. Changinginally, the functione,, in (5) closes the gap between the
w outside the support o/, does not affect the value offunction s,, on the left and its postulated integral represen-
the integral. We exploit this freedom to let quickly go to tation on the right. Such a gap is caused by the numerous
zero outside the support aff,, making sure thatv has a idealizations underlying the derivation of (5). For example,
bounded support. A condition of this kind is needed for sontbe derivation ignores relaxation effects, the chemical shift
mathematical arguments at a later stage. For later purposesbstveen fat and water, the effects of eddy currents, and the
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xz-dependency oV, A, andw. In addition, the MR signals  All major MRI methods do admit a time map. Even more,

are cluttered by noise. (Yet,, is a function, not a random many MRI methods, including the standard versions of Carte-

variable.) The error term is unknown, but expected to be smallan, spiral, and radial MRI, have natural time maps that may
Omitting the terme=*®)(¢=7-) under the integral sign be expressed in closed form. For example, the natural time

in (5) yields the standardk-space description of the MRI map of spin-warp MRI is

experiment, but also increases the error term. . . .
MRI methods may be classified by their trajectories and7(k) = {(()1 Er/Fanax) T2, glskee 5o (Tmax)

sampling patterns. In spin warp MRI [14] and its relatives, ’ '

the trajectories are chosen as straight equidistantly spadedddition, the natural time maps of the standard versions of

lines parallel to thek;-axis (for example) and the samplingCartesian, spiral, and radial MRI are continuousSinOther

points form a Cartesian grid if_(#,,.,). Similar grids arise natural time maps, in particular those of some segmented

with blipped echo planar imaging (EPI) [15]-[17]. We refer t/ersions of blipped EPI [16], [17] or of ring-segmented spiral

all such methods as Cartesian MRI. In spiral MRI [18]-[20]MRI [23], are discontinuous irb.

the trajectories are chosen as interleaved archimedian spiraléssuming from now on the existence of a time map, we

starting at the origin ok-space, resulting in a spiral samplingdefine P by the formula

pattern inSo(7.x ). In radial MRI [21], [22], the trajectories o )

are chosen egs str:iight radial lines, resulting in a radial sampling (Pf)k) = /2 fx) (G_W(X)T(k) - 1)‘3_“”i dx.  (21)

pattern in.So(*max)- R

To facilitate the reasoning about inversion strategies and€ Pounded supports afand7 make7> a compact operator
reconstruction algorithms, it is advisable to extend the senﬁﬁf-the Hilbert-Schmidt type [24, ch. VI]. The sul = 7+7

continuous equation (5) to a fully continuous equation betwebhthen a linear continuous operatorin(IR”) and given by

functions in L,(IR?). As the first and major step toward this
end, we try to establish an operatéfl in L,(IR?) such that
(5) may be rewritten as

(20)

(M) = | fl)e “OmWexkagg  (22)
]RZ

It follows from (5), (18), and (22) that\ satisfies (15), as
desired.
mit) = M m it Em (T ) .
sm(®) = (MHPm() +em(?) As the second and minor step, we extend the MR data onto
Osm<M, telr—, ] (15 gyof k-space by picking a functiop € L,(IR?) that satisfies

The standardk-space description of MRI suggests to decom- g(p,.(¢.)) = $m(tn), 0<m< M 0<n<N. (23)

in the f
poseM in the form In addition, g is to be well-behaved in between the sampling

M=F+7P (16) Points and to vanish outsidg.
It now follows from (15) and (23) that
where ¥ is the 2-D Fourier transform as defined by Mf=g+e (24)

(FHK) = F(x)e™™ ¥ dx (17) Wheree € L,(IR?) closes the gap betweentf and g and
R? satisfies

and P is a perturbing operator that takes the off-resonance(p,,(t,)) = —en(t,), 0<m<M,0<n<N. (25

effect into account. An equivalent decomposition & is . ) ) )
M = F(T + F'P) where T is the identity operator in Equation (24) is the wanted fully continuous companion of (5).
La(IR?). The operatotM may be regarded as an extended model of the

dMRI experiment and will be referred to as the MR transform.

To be able to defing?, we request that the MRI metho 1P is also compact, the Fredholm alternative holds

under consideration admit a “time map” R? — R such SNc&/

that for F='M = 7 + F~1P as well as forM [24, ch. VI].
Unlike the standard modelF, the extended model depends
TPm(tn)) =tn —7_, 0<m<M,0<n<N. (18) on the MRI system and the MRI experiment (viaand 7)

and even on the object (via). We write M|w, 7] if we want
Such a time map exists if the trajectories do not intersect ortif emphasize this dependency. The values ofitsideS have
they do, all trajectories intersecting at a point visit that point & effect on the values aM f in S so that our decision to
the same time (time shift of the subexperiments understool#}t 7 go to zero outsides does not affect the validity of the
Under these conditions, we can defineat the grid points model. Settingy to zero outsides is in line with our lack of
p~(tr) by (18) and then extend onto all of S. The extension measurements outsideand the observation tha! f, which
is somewhat arbitrary, but usually there is a natural choice. Fequals’ f outside the support of, tends to zero alk| — oc.
mathematical convenience at a later stage, we bickly go It is not strictly necessary that and = have a bounded
to zero outsideS, making sure that has a bounded support.support. For example, ity and r, are arbitrary real con-
Without loss of generality we may assume that stants, then the functioa°(™=7) M[w, 7](c™™ f) belongs

to Lo(IR?)
min 7(k) =0, max 7(k) =T. (29) - -
kes kes Mlw = wo, 7 = 70 = T Mw, 7)(e=7 ). (26)
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In the standard approach to MR, is taken as model anfl thus of f [cf. (9)—(11)] makes it possible to extract a first
reconstructed by computing a discrete approximatioftdg guess ofw from two standard images obtained with slightly
in R, using the available samples gfin S. It follows from different preparation times [25]. The resulting frequency map

(16) and (24) that will be degraded by the off-resonance artifacts present in the
. . . two standard images, but as long as these artifacts are small,
Fg=f+F"Pf-F "¢ (27)  a frequency map obtained in this way may yet be usable. If

hich sh that th fth truction is aff t%ae is willing to spend the effort, one can reconstruct the two
which shows that the accuracy of the reconstruction IS aftect ages again, this time based on (28) and the current guess

: . -
by the size o as well as by the size 67 f. The term»~ "7 of the frequency map, and extract an iterated frequency map

in (27) represents a continuous (as opposed to discrete) Vergian ihe two newly reconstructed images. The process may

of the off-resonance artifact. The accuracy of the result is algg continued. Nevertheless, in practice only some more or
affected by the size of, the density of the sampling pattern Ness accurate estimate of the frequency map will be available.

S, and the choice of the reconstruction algorithm. Hencefort 5 a result, an image reconstructed via (28) may still show

an MR image reconstructed by inverse Fourier transformatigptifactS caused by the imperfections of the frequency map.
will be called a standard image.

. . Oncew has been estimated anfreconstructed, one can
_ Whe_ther the off-resonance arfufac_t present in a standae{ 0 recover Cy M, using (9) and (11) or (10) and (11), as
image is acceptable depends on Its size and '_‘at“re- A_S IS V4 bropriate. Under a wide range of circumstances, the phase
known, the off-resonance artifact manifests itself mainly ¢CeeM . is independent of the object and once it has been
rc

distortion in Cartesian MRI [25] and mainly as blurring indetermined one can exploit (9) and (11) or (10) and (11) to
spiral and radial MRI [7]. While a moderate distortion may bg . . .+ - éstimate ab even from a single image

tolerable, blurring is generally not.

The size of the off-resonance artifact grows with b@tand
T. More precisely, the value of the expressieh/(27) equals
the number of extra turns made during the acquisition phase byn this section we study how one might design recon-
the transverse magnetization at a point with w(x;) = w4, struction algorithms that compute a discrete approximation to
relative to the transverse magnetization at a peint with M~1g.

w(x_) = w_. This number of extra turns can be significant. If M~! were known explicitly, one could perhaps design
For example, whenogr/y = 1 T, Q/wrr = 5 ppm, and a reconstruction algorithm by discretizing the formula for
T = 20 ms, thenQT’/(2r) = 4.26. M~1g. Unfortunately, M1 is not known in closed form. An

It is always possible to reduce the size$f" by reducing alternative approach consists of computing a discrete version
T. However, according to (12), if the shape of the trajectoried AM™g whereAMT is an explicitly known near inverse @1.
and the size ofS are not to be altered, the reduction of One such near inverse i&~!. Approximating M~! by
T must be compensated for by an increase of the gradigft! is akin to the standard approach to MRI. To discuss
strength, which is possible only to a limited extent. Whethe accuracy of this approach, we determine the point spread
this possibility is exhausted, one must shorten the lengthsfafiction (PSF) of the operatgF—* M — Z, i.e., the function
the trajectories inS, which means that more trajectories aré: IR? x R? — C such that
needed to covef with the required density. In other words,

Ill. INVERTING THE MR TRANSFORM

one is left with increasing the number of subexperiments. This, (F *Mf — f)(x) = / | Polx, x)h(x') dx’. (29)
however, increases the total duration of the MRI experiment, R
which is generally undesirable. Using the explicit representations &f—! and M, one can

Another approach for reducing the off-resonance artifactasily show thatf, is given by
consists of computing a discrete approximation to 1 .y ‘ )
Po(x, X)) = 55 / (e*zw(x ) _ 1) et XDk g
]RZ

-1 __ _ —1 2 2
MTlg=f - Mt (28) (2) (30)
SinceF 1P is compact, the spectrum gf 1P contains only Inserting the series expansion
isolated eigenvalues with at most one accumulation point at oo g
A = 0 [24, Th. VI.15]. Therefore,M~! exists unless—1 gD _ g %(—w(x’)T(k))l (31)

happens to be an eigenvalueff!P. Also, as a consequence =1

of the Fredholm alternative and the inverse mapping theorem, right-hand side (RHS) of (30) and interchanging the
M~1 is continuous if it exists [24]. Thus, as long as NQrder of summation and integration gives
eigenvalue ofF~1P is close to—1, the termAM~—1¢ in (28)

will not blow up and M~1g will be close tof. Ideally, an , Sadgyl L] ,
image reconstructed in this way would have no off-resonance Po(x, x) = Z il (CwE))(Fr)E-x). (32)
artifact. =1

For this approach the frequency and time maps must Bhe interchange is justified by the Lebesgue dominant con-
known. While the time map is known at least at the grigdergence theorem [24], which is applicable because, and
points p,,(t,,), an accurate estimate of the frequency map the support ofr are bounded. Inspection of the RHS of (32)
difficult to obtain. Fortunately, the-dependency o and suggests thalf(x, x') — 0 as|x — x| — oco. On the other
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hand, whenx = x’, then|Py(x, x’)| will generally be small
only in regions wherev ~ 0. As a result,7 M f will be

485

A discrete version of the RHS of (38) can serve as a CPR
algorithm. Different discretization strategies for the RHS of

close tof in regions wherdw| is small, but in regions where (38) or different functiong; andd; in (35) will lead to different

|w| is not so small,F~* M f will generally not be close t¢.
While the influence ofv on F; is local, the influence of is

CPR algorithms. Algorithms of this type can be arranged to
take advantage of the fast Fourier transform (FFT), which

nonlocal and more complicated. Still we can say that urfessmakes them potentially faster than the weighted correlation

or T are very smallF~! is not a good approximation t&1=1.
A much better approximation ta1~! is provided by the

conjugate operatodM = MJw, 7] given by the formula

(M) = oz [ o= ®bag. (3
(2m)2 JRe

The propertles ofM are analogous to those d#t. Note that

M =F~1if w=0. The PSF ofMM — T can be found like

that of #~ M — T and evaluates to

i

Pi(x,x)= Z :
=1

(w(x) —wE ) (F ) x - x). (34)

!

o~

method.
If wy andrq are arbitrary real constants, we obtain a variant
of (38) by rewriting (33) as [cf. (26)]

Mw, 7]g = ei“"TO./Vl[w — wg, T — 'ro]ei“"o (T_To)g. (39)

The expression on the right may be approximated similarly
as the expression on the left, but now the approximation
(35) needs to be good fos € [w_ — wg, wy — wo] and
t € [r— — 70, T4 — To)-

Another interesting near inverse aM is given by
FAM_F~1 with M_ = M[-w, 7]. Computing a discrete
approximation taF ~* M _F~1g was proposed by Kadah and

In contrast toP,, this PSF depends on the difference betwednu under the name simulated phase evolution and rewinding

w(x) and w(x’). As a result, MM f will be close tof in

(SPHERE) [9]. The PSF off *M_F~tM is analyzed in

regions wherev varies slowly, even ifv is not close to zero [9]. (Strictly speaking, the term SPHERE implies the usage

there. The influence af on P, is still local. If w varies rapidly

of an estimate ofv obtained from two standard images in

in some region, this will spoil the quality of the approximatiorihe usual way.)

only in that region. The influence of on P, is the same as

In Section V we shall present a range of fast SPHERE

that on P,. We refer to computingMg as conjugate phasealgorithms. The essential step of these algorithms is the

reconstruction (CPR). This term was coined in [6] as an ali@@mputation ofA1_ fo with fo

for the weighted correlation method proposed by Maetal.

[26]. While the weighted correlation method was derived and
analyzed in discrete terms, it may also be seen as a method
for computing a discrete approximation felg by means of a

matrix-vector product. However, since the matrix involved is

dense and ha&? x M N entries when the image hds x K

pixels, the weighted correlation method is rather slow exceP

for small images.

In Section IV we shall present a range of fast CPR algo-
rithms. All these algorithms make use of an approximation of

the form

L—1
Y Gls)di()
=0

with suitable functionsy, and d;. Substitutingw(x) for s and
7(k) for ¢t and setting

s € [w—v w-l—]v te [7_—7 T—I—] (35)

d=dor (36)

c=cjow,

turns (35) into
L—1

00 3™ (x)dy(K),

=0
Inserting (37) into (33) gives the approximation

L—1

Mg = Z aF Ydig)
=0

x € suppf, ke S. (37)

(38)

where we have also used the fact that the functibty is
sensitive to the values af(x) andr (k) only whenx € suppf
(becauseMyg ~ f and the influence of is local) and when
k € S (becausey was set to zero outsidg).

= F~lg. The approximation
(37) now leads to

L1
M_fo = Z diF(cifo)

=0

(40)

which is formally similar to (38).

A very accurate approximation td1—! can be derived
rom the work of Norton [27]. Assuming that and 7 are
differentiable, this approximation reads

A 1 w(xX)T iX-
(Mo)o0) = 53 /R ()| I, (1] 00700 ek g
(41)
where
JTx (k) =1+ 81¢(k) 81w(x) + 827(1{) 82w(x) (42)

is the Jacobian of the transformatifif,: R? — IR? defined
by Ty (k) = k+7(k)(diw(x), dw(x)). It follows from (33),
(41), and (42) that

Mg = Mg+ 01w M(goy7) + dow M(gdar).  (43)

Thus, computingﬂg can be reduced to three CPR'’s. Ignoring
the derivative terms in (43) leads back to ordinary CPR.

Whenever we know a good near inverse .bt, we can
compute Mg iteratively [28, Sec. 2.5]. WithM as near
inverse, the iteration reads

bil IMQ
The initial step once again amounts to ordinary CPR. Each

subsequent step requires one CPR and one evaluation of
Mf,. This term may be computed similarly ast_ f, in

(44)
.2, ... (45)

fn-l—l n=1
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(40). Convergence is guaranteed|# — MM|| < 1, where may be used to find a®, that is only a little larger than
|| - || denotes the operator norm i, (IR?). We refer to the suppf. In the worst caseRy, = Ry(Kd/2) may have to be
algorithm (44), (45) as CPR with post-iteration. The algorithmshosen. The available estimates of sffpandw are then used
presented in Sections IV and V may also be used to implemeotestimate the numbets_, w,, and$? defined in (7) and (8).
CPR with post-iteration. For simplicity, we shall use the symbals_, w,, and$} also

A different class of algorithms for computiig= M~'gis for the respective estimates. The time map may or may not
obtained by discretizing the equatidrth = g and solving the be known in closed form.
resulting linear systems of equations. It is also possible to solve
a discrete version of the equivalent equatiBn'?Ph +h = B. Discretization Strategies

F~1g, which is a Fredholm integral equation of the second _. : : o .
kind for h [29]. Methods of this kind are described in [30]. It /'St We discuss three discretization strategies for the RHS
of (38) (or one of its variants), assuming that the integer

seems, h.owever, that the _resu!tlng algorithms are slower théar?d the functions; andd, in (35) and (36) have already been
the algorithms presented in this paper.

chosen. Each discretization strategy leads to a different class
of algorithms.

IV. FAST CPR ALGORITHMS The critical step is the discretization of the terffis! (d;g).
o Since the functiong; = d; o 7 and g are certainly known on
A. Preliminaries the non-Cartesian grid i, (r/d), we may use the gridding

From now on we assume thahas its support itR,(Kd/2) Mmethod to computes—(d;g). The resulting algorithms have
for some (large) integeK and some (small) numbef > 0. the general form
For simplicity, K is to be an “FFT-friendly” integer that 1
admits an FFT algprlthm. We also assume tﬁas_ a subset f—v Z il F el C(dss). (47)
of Sy(w/d). The grid formed by the sampling points,,(¢,,)
need not be Cartesian and, unless stated otherwise, we assume
that it is not. We can compute a standard image dd & K Here,d; € C*" is a discrete version ofl;, sampled on
Cartesian grid inR (K d/2) with grid spacingd using the the non-Cartesian grid ir.(r/d), and ¢; € C*¥ is a
gridding method [31]-[33]. The procedure may be formulategdiscrete version ofc;, sampled on the Cartesian grid in
as R (Kd/2). Again, the juxtaposition of two grid functions on
1 the same grid in (47) is understood as pointwise multiplication.
fo = vFppeCs (46) The summation in (47) is also understood pointwise. (These
conventions also apply to similar formulas below.) Since
sm(ta), C a discrete convolution operatopiy an FFT- %(Pm(tn)) = dy(7(Pm(t,))) = di(t), the time map is not
based discrete version 57—+, v € RXX a discrete weighting explicitly needed. CPR algorithms based on this discretization
function, andf, € CX¥ the resulting standard image. weStrategy were proposed by Nait al. [6], [7]. o
regard the vectors occurring in (46) as “grid functions” ¢hd 10 @void all but one of the time consuming gridding steps,
and FzL, as operators acting on grid functions. Specifically"'a" €t al- [8];[?996“?" replacing(d;s) in (47) by diCs,
the operato€ transformss, which is a discrete approximationWhered: € € is a discrete version of; sampled on the
to g on the non-Cartesian grid i, into a discrete approx- Cartesian grid inS;(w/d). The resulting algorithms have the
imation tow * g on a Kk x K Cartesian grid inS,(x/d) 9€neral form
with grid spacing2z /(dK’) wherew is an auxiliary window * _
; ; ] g" =Cs (48)
function with a small support. The operathi.. transforms L
the output of this “gridding step” into a discrete approximation _ -1 «
to F~w* g) = (27)%(F~*w)(F~g) on the Cartesian grid f=v ) aFr(de’). (49)
in R;(Kd/2). The grid functionv is a discrete approximation
0 (2m)2(F lw)~! on the same grid. The juxtaposition of It is now necessary to evaluatk = d; o 7 on the Cartesian
and]—";éTCs in (46) is understood as pointwise multiplicationgrid in Sy(7/d). This is no problem ifr is known in closed
Finally, we assume that the regighis so large and the form. Otherwise, some form of interpolation must be used to
sampling pattern inS so dense that the standard image isesampler or d; from the non-Cartesian grid to the Cartesian
not seriously degraded by truncation and aliasing errors. Alsmijd in So(w/d). If the time map is discontinuous if, this
the errors in the data and the off-resonance effect should beirst@rpolation may incur an extra error.
small that the standard image is at least a crude approximatioThe replacement oC(Ells) by d,Cs creates some error,
of f. too. As the gridding step is, in essence, a discrete version
We wish to compute a grid functiofi € C*% that is a of a convolution with a narrow window function, this error
discrete approximation to the RHS of (38) (or its variant fas negligible whend; is smooth. Howeverd; is not always
M[w — wg, T — 7)) on the Cartesian grid ik (Kd/2). An  smooth. For example, the natural time maps of spiral and
estimate of the frequency map is needed on the same Cartes#étial MRI (cf. Section VI) are not differentiable & = 0
grid. Also needed is a safe estimdiy of the support off. and this behavior carries over #h. Some time maps are even
If the standard image is available and not too degraded,discontinuous inS.

=0

wheres € CM" is the vector with componentgp,.,(t,)) =

=0
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To avoid this extra error, we suggest resampbngnto the The associated functions = ¢} o w are discontinuous and
Cartesian grid inSy(w/d) by first computingf, via (46) and define a partitioning of?, into the disjoint segments
then

Ry = {X € Ry | Cl(X) = 1}. (56)
g =Frrrio (50) . . . .
L-1 The effect of the choice (55) is a sort of nearest neighbor in-
f= Z i Fppp(dig). (51) terpolation in (51). The algorithm (50), (51) witl as in (53),
=0 wi as in (54), and; as in (55), will be referred to as algorithm

. . CPR-DFE-NN. (DFE stands for discrete frequency exponential
In (50), Frrr represents an FFT-based discrete versiof of ,,5qimation, NN for nearest neighbor interpolation.)

Together, (46) and (50) effect a resampling of the MR data 11,6 jmage quality offered by algorithm CPR-DFE-NN may
from the non-Cartesian grid to the Cartesian gridSis{n/d) e hampered by the discontinuity of the functians(Spiral
[33]. The general algorithm (50), (51) acts on the standaggy s an important exception, see Sections VI and VII). The
image and involves only Cartesian grids. When combingg,q, ing choice, due to Maret al. [8], avoids this problem.

with (46), it requires two 2-D FFT's more than the genergl,; 4 >1and3, > 1 be two parameters subject to
algorithm (48), (49). In many situations, the standard image is

already available or needs to be computed anyway, and then L = B30T/ (27). (57)
the extra cost reduces to a single 2-D FFT i§ continuous in

S, then M f will also be continuous there and the resamplinglso let

of g via (46) and (50) will be accurate. Conversely,rifis

discontinuous inS, then M f will also be discontinuous there we = (w- +w4)/2,  Qr=w.Ep/2  (58)
and the resampling may af be inaccurate.

Discontinuous time maps (on non-Cartesian grids) remain, , _ ML, w =0+ (l+ l)Aw, 0<1l<L.
difficult to cope with. In the case of ring-segmented spiral MRI 2 - (59)

or other segmented non-Cartesian MRI methods, one can %iilhilarly, let

apply an instantiation of one of the general algorithms (48) and
(49) or (50) and (51) to the data in each segment separately Te = (17— +74)/2, Ty = 7.4 3T/2 (60)
and add the results. If there are many segments, algorithms

based on (47) may be faster.
AT = 3,T/L, =T +(k+3)Ar, 0<k<L.

(61)

C. The Algorithms Then for eachs € [w_, w,] definee,: [T, T4] — C by

We now discuss possible choices for the functighandd ‘
in (35). In principle, each choice can be combined with any of £,(t) = w(t)e"* (62)
the three discretization strategies described in Section IV-B.
The CPR algorithms presented in this paper, however, arefierew: [I1_, 7] — IR is a window function such as
based on (50) and (51). ot

In practice, one also needs some way of estimating the cos? < = ), if 7_ <t<7_

number of termsL, from the data. For the moment, we suggest _) 2T -7 it <i< 63
choosingL via a parametef$ > 0 in the form w(t) = L ifr_st<7 (63)
cos? [ Z L if rp <t<T
L = [BQT/(2r)] (52) 2T, -7, )’ =T

the hope being thas might become an algorithm-dependenblote thate,(t) = ¢** whent € [r_, 7;]. For eachs €

constant. [w_, w4] we wish to approximate; in [7_, 7' ] by a trigono-
1) Discrete Frequency Exponential ApproximatioA: nat- metric polynomial of the form

ural choice for the functiong;, proposed by Nolket al. [7], I

are the discrete frequency exponentials IL(t) = d(s)ert, te[l, Iy (64)

|
-

Il
<

&)=t 0<I<L. (53) t
Suitable coefficientsj(s) can be found by trigonometric

The frequencies; and the companion functior$ are yet to interpolation, i.e., by requesting that

be determined.
One of the simplest choices fay; and ¢}, also indicated es(1) = I, (72), 0<k<lL. (65)
in [7], is
In view of (57)—(62) and (64), this may be rewritten as
w=w_+(1+3)Q/L, 0<I<L (54)

T
)

— W Tk

. Q Q / ilAwTy i2wkl/ T 0<k<L
C?(S) — { ].7 if —E S s —w; < E (55) ES(Tk)C CI(S)C ¢ ’ = < L.
0, else. (66)

N
Il
<
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The coefficients)(s) are then given by [34] We propose to let)(s) = (a; + ib;)s' with real coefficients
CilAw L1 a; and b; yet to be determined. This choice makes the
&(s) = e e (13, ) 0Tk g mi2MY/ L function ¢j(s)t a polynomial _in the single variablg = st.
L 0 Moreover, due to the centering, € [—Q7'/4, QT'/4] when

0<I<L. (67) s€[-/2, Q/2]andte [-T/2,T/2]. So now we seek real
) o . coefficientsa; and t; such that
In practice, one calculates the coefficientés) for a finely 1
spaced set of frequencies € [w_, wy] and uses interpolation i N _
to find them at intermediate values of It can be deduced (@ +ib)¢, ¢ € [-QT/4 aT/]. - (75)

from (67) that =0

) ) To find such coefficients, we determine the real polynomial
q(s+Aw) =c_1(s), 1=<I<L (68) p(¢) = L' agn that interpolates the functiofRei® =
(s + Aw) =e B2 (s). (69) cos ¢ at the L zeroes of the transformed Chebyshev poly-
nomial Ty (¢) = Tr(&(¢)) in the interval[-QT /4, QT/4],
whereT7p, is the standard Chebyshev polynomial of degiee
and £(¢) = (¢ + QT/4)/(QT) — 1. The polynomialp(¢)

It therefore suffices to computg(s,) only for thes; in one
of the frequency bingv;, wiy1]. UnlessL happens to be FFT-

friendly, the sum (67) cannot be evaluated via an FFT but, easy to compute and affords nearly the same accuracy
practice,L is so small that a direct evaluation via (67) is fairly [QT/4, QT/4] as the minimax polynomial of the same
fast. To ac_hieve a good a_pproximation i_n (35) Wif[h asm egree [Zé, Secs. 5.8-5.10]. The coefficiebtsare found
L, the choice off3, and /3, is both essenpal/ and critical (Cf'similarly by interpolatingSe’® = sin ¢. Since the interval
Section VII). The algorithm (50), (51), with; as in (53),w; [—QT/4, QT/4] is centered and the functiotos ¢ is even

) ;o \ , ,
as in (59), and; as in (67), will be referred to as CPR-DFE-Ty, o coefficientsa; are zero when/ is odd. Similarly, the

(r stan_ds for tr!gonometrlc m_terpolanon_) . . coefficients; are zero wheri is even. The number of terms
2) D|scr_ete T'me Exponennal Approximatiohte obtain required to achieve a prescribed accuracy in (75) increases
dual _algor/|thms if we .|ntercha.nge the roleslg)fand t. The " ith the size of the interval in which the approximation must
functions; are then discrete time exponentials, be good. Centering andr minimizes the size of this interval
dis)=e*", 0<I<L (70) and also centers it.

. ) . . The resulting algorithm may be stated as follows:
and the timesr; and the companion functiong; are still

to be determined. If we choose them in analogy to (54) g =" Frrrfo (76)

and (55), we obtain algorithm CPR-DTE-NN (DTE stands ol

for discrete time exponential approximation.) A version fo= > an@”Frp (') (77)

of algorithm CPR-DTE-NN based on (47) was proposed =0

by Noll et al. [6]. The analogs of the choices (57)—(67) ~ [(L—1)/2]

lead to algorithm CPR-DTE-T. fo= Y @™ Frpn (AR (78)
3) Polynomial Approximation:lt was pointed out in [8] =1

that the functiong/, might also be chosen as polynomialstjn f=c“m(f.+if,). (79)

although suitable companion functiogswere not exhibited. PP i ) )
It was also demonstrated that discrete frequency exponentdf/®: ¢, , 7, and ¢*“™ are discrete versions of the
are nearly optimal. Nevertheless, polynomial approximatidH"ctionse’<”, w, 7, ande*, respectively, sampled on the
can lead to an attractive CPR algorithm, as we shall now shdigrtinent Cartesian grids. The algorithm (76)—(79) with the
The algorithm to be presented turns out to be fastest Whe@lﬂove choice of the coefficients will be referred to as algorithm

works with centered versions af and+. These are defined by CPR-P (P stands for polynomial approximation). o
For large values of andQ7’, the summations and multipli-

W =w— W, T=T—=Tc (71) cations in (77) and (78) involve numbers of grossly different
with w. and 7. as in (58) and (60), respectively. With theorders of magnitude. In such cases, algor_ithm CPR-P may
further definitions suffer from a loss of accuracy due to rounding errors.

. . o Interchanging the roles of and¢ in (74) does not lead to
M= Mlwe, 7],  §g=¢e“"g (72) a new algorithm.

we have .
D. Miscellaneous Remarks

Mg = Meg (73) The accuracy of the above algorithms depends on the

as a special case of (39). Due to the centering, we further hageuracy of the approximation in (35) or (75). This accuracy,

w(x) € [-Q/2, Q/2] if x € Ry and7(k) € [-77/2, T/2] if in turn, depends on the choice of the functiafsand d; and

k € S. As a result, we now need to find functiogssuch that will generally increase wittl.. The number of terms necessary
L to achieve a prescribed accuracy will also grow wéd'.

R cﬁ(s)tl, s€[-Q/2, Q/2, te [-T/2, T/2]. Different algorithms may vyeII produpe different artifacts. The
accuracy of the resulting images will also be affected by the

(74) accuracy of the available frequency map.

|
—

i

Il
<
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The computational effort for computing one of the terms
in the sums (51) or (77) and (78) is dominated by the effort
for computing a 2-D complex FFT. Thus, the computational
complexity of these algorithms is mainly determined by the
number of terms required for the desired accuracy. The op- v
eration count may be reduced a little by means of a binary
mask indicating the regio®,. Such a mask is also useful to w1
suppress artifacts that may arise when the estimated frequenc
map is grossly false and nonzero outsidg. s 0 1

In principle, the CPR algorithms presented in Section IV-

C may be applied to Cartesian MRI as well. The initial (a)

resampling of the MR data onto a Cartesian gridSif{=/d)

is then unnecessary. Also, there is no need to resample
time map when it is not known in closed form. The standard
image will be distorted and, if the frequency map is obtained
in the usual way, it will be distorted as well. Algorithm CPRWhereo,: [0, 1] — C is defined by
DFE-NN is not usable with Cartesian MRI, as it shifts the 2 ks i2mm

segments, defined in (56) by different amounts, thus leaving Tin(5) = (m/d)sc 2P/ @M cr2mm /M (83)
the boundaries between the segments visible. The fact that
time map of a Cartesian MRI method depends only ign
(or k2), may be used to speed up the computation of the 2

1. (a) The functiory, defined in (85) and its inverse;; . In this
ple,a = 0.125. (b) The associated time map, as defined in (84).

gﬁ% ¥ [0, 1] — [0, 1] is a smooth monotonically increasing
J‘Bnction with+)(0) = 0 and (1) = 1. The natural time map is

FFT’s involved. (k) = Tyt (dKk|/m), if k € So(m/d) (84)
0, else.
V. FAST SPHERE AGORITHMS . )
) : ) A good choice fory is [5, Sec. 3.6]
Every CPR algorithm presented in Section IV-C has a
SPHERE counterpart. The general form of these algorithms Palu) = #7 O<a<l (85)
is [cf. (40)] a+(1—a)u
L—1 . . . . . .
in which case the sampling density Bv(7/d) is adequate
h = Z diFrrr(eifo) (80) whenmM N > (n/4)K?. Fig. 1(a) illustrates the functiong,,
liol and« ;! for o = 0.125. Fig. 1(b) shows the resulting natural
f =Fpprh. (81) time map.

i l —1.1 : _

Like the CPR algorithms of Section IV-C, these algorithms act Th_e functlo_n s andFir are real and rotat|o_naIIy sym
onf, and work with Cartesian grids throughout. The function@emc' In regions where varies slowly, the rotat|_ona| sym-
0 ' metry of #—17! shapes the PSF (32) ¢f—' M — T in a way

/ 4 H H 1 —
¢ and dl. may b(_e c/hosen n tt'e same way as In section I\{hat makesF—1 M f a blurred version off, where the amount
C. Specifically, ifd;, w;, and¢; are chosen as in (53)-(55), blur nearx grows with |w(x)| and 7. The blurring of the

respectively, we obtain algorithm SPH-DFE-NN, the SPHERS andard image makes it possible to obtain a good yet safe
counterpart of CPR-DFE-NN. Algorithms SPH-DFE-T, SPHz . 9 P good y
estimate of supp.

DTE-NN, SPH-DTE-T, and SPH-P arise similarly. Algorithm . . : :
i ' . - The algorithms described in Sections IV and V may be used
SPH-DFE-NN leaves the boundaries between the segnignt o deblur standard spiral MRI images. Despite the discontinuity

defined in (56) visible and is not usable. Algorithm SPH-DT 5 its coefficient functions, algorithm CPR-DFE-NN is appli-

NN was first described in [9]. ca}ble to spiral MRI, because the small amount of remaining

Assumlng the same number of tgrms, .the. c_omputatlo ffur tends to obscure the boundaries between the segriignts
complexity of all these SPHERE algorithms is similar to that o efined in (56)

::Zerlrr Coli)/sr counterparts. Most remarks made in Section V- Furthermore, algorithm CPR-P may be speeded up consid-
y . erably, providedv and the phase of are reasonably smooth

After a change of the sign of and without the final inverse which they usually are). We can formulate the requirement
Fourier transformation, these SPHERE algorithms are alsg y y ' q

suited to compute the termv f,, in (45). or fas
f=%r =0, + ) (86)
VI. APPLICATION TO SPIRAL MRI

The trajectories of spiral MRI [18]-[20] are interleavec}'vhere the function®, r, r,, andry; are realr > 0 and

archimedian spirals covering the disl(7/d). The trajec- ¢y = FH o Ff) (87)
tories may be written as

P (t) = (Rom (P((E = 7-)/T)), Som(P((t —7-)/T))),
0<m< M, telr_,74] (82) wio(k) = cos? (v d|k|/2), O<ap <1  (88)

for some low-pass filtet),, such as
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For the fast version of algorithm CPR-P, {&t, 7., @, 7, and  with

M, be defined as in Section IV-C-3. The algorithm exploits L[(L—-1)/2] R

the fact that the function Tek = Z an@® F (7 hy), k=1,2 (105)
i (b—weTo) LiGoTe D1 JiweT =0
h= Fe 1w o Fri(dee g)) (89) [(L—1)/2]

Tok = Z 1)2171®21—1_;,_——1(%21—17%)7 k=1,2.
=1
Moh =~ (90) (106)
i - ) The functionsr. x andr, i are real because the coefficients
We first show thath is computable fronmy. Sincer(k) = 0 4 andby,_; are realg is real,h; andh, are Hermitian, and

near the origin ofk space, we have 7 is real and rotationally symmetric (and hence Hermitian).

is computable fromy and satisfies

FH w7 g) 2 F~H wioe™ T M) (91) Since M. must be nearly real;. » andr, ; must be nearly
it 1 zero and
me T (we(Ff) (92) i 107
— ei(¢—wc7'c)7>10' (93) V= Te 1 — To,2- ( )

Combining all these observations leads to the following
So ¢il®~«<7e) is computable frony. All other terms in (89) algorithm for computing a discrete approximatioto » = |f|
are either known or also computable. from fo:
To demonstrate (90), we note that

g =7 Frrrio (108)
Meh =™ M(e™™"h) (94) fio = Frpp(wig) (109)
=TT M F(eT T P (e g))) (95) = 6 | Pl (110)
R c_’:“bc”_‘“Tfc_““'TC./\_/l(c_““'CTC““'CTg) (96) by, = Frpn (RF) (111)
=e Mg (97) ho = Frpm (ST) (112)
~r (98) L-1)/2)

_ _ y r. = apRt + o Fop (70 113
The crucial step here is the transition from (95) to (96), o ; a2 Frppy(T7h) - (113)
which is based on an interchange of the order of the mul- [(L—1)/2]

inli H H —i¢ IWTe i i ~2]— — ~2l—11
tI_p|IE?£I9ﬂ with e7"%¢ anq the appllf:ayon of the operator r, = Z bog_ 1% lf‘F]iETh(’rQl hy)  (114)
Me="7F. The error resulting from this interchange is small =y

because:~*#¢*“™ is smooth by assumption and the PSF of r=r,—r,. (115)

Me™ @™ F _ T ) . . .
Here, wy, and ¢*“™ are discrete versions afy, and ¢*“™,
Pox, x') = 1 / (eié(x)r(k) _ 1)6i(x—x’)-k dk (99) Tespectively Frpr is an FFT-based discrete version/ffor
R? real input data and Hermitian output data [28], afigip,
it is an FFT-based discrete version&f! for Hermitian input

=3 LolR)F ) (x ) (100)

! data and real output data. In (11@), denotes the complex
conjugate offy,, | -| denotes pointwise magnituds, |fi.| ! is
is concentrated wherg ~ x’. an approximation te~*#—«<7) andf is an approximation to
Now we show thatM.h can be computed efficiently. Like 7-17, We refer to this variant of algorithm CPR-P as CPR-P-r,
any other complex-valued functioh, admits the representa-as it relies on the rotational symmetry of the time map.
tion The advantage of algorithm CPR-P-r over the original
T version is thatF 3.1, can be made nearly two times faster than
h = hy +thy (101) Frpop. Part of trpli};Téain, however, is lost by the computational
with the Hermitian functions effort for (109)—(112). Due to the additional approximations
R R R R involved, algorithm CPR-P-r may not be quite as accurate
hy = F(R(Fh)), he = F(S(Fh)). (102) as algorithm CPR-P. It has been found experimentally that
) . ) ) ) the range of acquisition times for which algorithm CPR-P-r
Exactly as descrlbed_lr_1 Section 1V-C3, we can find an '_megBFovides good results can be extended by subtractfy|fi|
L > 0 and real coefﬂmental, b; such thate; = 0 whenl is from the  in (110) and addingﬂoI to ther in (115).
odd, & = 0 when! is even, and To some extent, it is possible to deblur spiral MRI im-

L=l R ages without explicit knowledge of a frequency map. The
Mch =~ Z (ar + ib)o' F~H(7h). (103) starting point for such methods is algorithm CPR-DFE-NN.
=0 The functionse; required for this algorithm are not known
Substituting (101) into the RHS of (103) gives initially, but can be guessed by an iterative procedure based

R on the assumption that,; in (86) should be real. Deblurring
MR Te 1 +iT6 2+ 0101 = To,2 (104) algorithms of this kind are described in [7] and [35].
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Fig. 2. (a) and (e) Standard spiral MR images of a phantom. (b) and (f) Estimated field maps. (c) and (g) Best possible CPR images. (d) and (h) Best
possible SPHERE images. The associated acquisition times are 20 ms (top row) and 40 ms (bottom row).

Algorithm CPR-P-r and the mentioned deblurring algathroughout. Computation times were measured by calling the
rithms are also applicable to radial MRI. The natural timstandard C-library function clock() at the beginning and the

map of radial MRI is given by (84) with)=!(u) = u. end of the program. The resulting computation times include
the overhead caused by the operating system. A 2-I¥ 256
VII. TEST RESULTS complex FFT takes about 0.5 s on this platform.

The various reconstruction algorithms presented inln all cases, the image size wd = 256 and the pixel
Sections IV-VI were tested on standard images of a phanto#ize ¢ = 1 mm. Standard images of the phantom were
The phantom consisted of a cylindrical plastic containgeconstructed using an adaptation of the general gridding
filled with NaCl- and CuS@-doped water. A 2-D array of method described in [33] to spiral MRI. The implementation
thin plastic rods served to make “holes” in the water. Achieves a reconstruction time of about 3.7 s per image.
cross-sectional slice of this phantom was imaged in a serfelg. 2(a) and (e) shows the standard imag€es at 20 ms and
of MRI experiments. The MRI system was a 1.5 T PhilipatZ" = 40 ms, respectively. As expected, the amount of blur
Gyroscan NT equipped with shielded gradient coils. Thgrows withZ. At T = 40 ms there is also some distortion near
phantom was positioned in the center of the bore with itbe top of the phantom. The standard image§’at 10 ms
longitudinal axis parallel to the axis of the magnet. The MRNdZ" = 60 ms continue the trend in the respective directions
data were acquired with an ordinary spiral pulse sequenesd are not shown here. To obtain a sharp standard image of
using a standard excitation pulse and ngulse during the this phantom with this MRI system, an acquisition time of
preparation phase. In all cases, the flip angle of the excitatibrms or less is required.
pulse was 45 the slice thickness 8 mm, and the repetition Frequency maps were extracted from the two standard im-
time 100 ms. The acquisition timé&;, was either 10, 20, 40, ages acquired at each acquisition time. The procedure involves
or 60 ms. The number of spiralg/, was set to 36, 18, 9, a phase unwrapping step, a masking step to set the frequency
or 6, respectively. The spirals were chosen as describedniap to zero outside the estimated support of the image, and
Section VI withd = 1 mm, K = 256, and+) = 1)505. In all a 2-D median filter. The computation of a frequency map
cases, the maximum gradient strength and the maximal sltakes about 2.4 s, excluding the reconstruction time for the
rate were 16.40 mT/m and 31.48 mT/m/ms, respectively. Thao standard images. Fig. 2(b) shows the estimated frequency
number of samples per acquisitiofy,, was set toK?/M in  map atl’ = 20 ms. The minimum and maximum frequencies
all cases. For each acquisition time, two MRI experimentgithin the estimated support of the image ave/(27) =
with preparation time§;, = 2 ms andZ}, = 3 ms were made. —27 Hz andw. /(2r) = 131 Hz, resulting in a frequency

Using a phantom has the advantage that its true imagesjgan of2/(27) = 158 Hz. The estimated frequency map at
known. The above experimental setup also ensures that #he= 40 ms is shown in Fig. 2(f) and has a frequency span
error term in (5) is relatively small. As the true frequencyf 2/(27r) = 166 Hz. The two frequency maps are almost
map is the same in all cases, the size of the off-resonandentical inside the phantom but differ near its boundary.
effect is solely determined by the size f Again, the frequency maps estimated ‘At = 10 ms and

All postprocessing of the MR data was done on a Sufi = 60 ms continue the trend in the respective directions
Microsystems Sparcstation 20. The computer programs wened are not shown here.
written in C, using single precision floating point arithmetic For each acquisition time, the standard image obtained with
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a preparation time of 2 ms was postprocessed with each of
the CPR algorithms presented in Sections IV and VI, using
the frequency map associated with the same acquisition time.
Here is a summary of the findings. 1 « « « « « + «
As expected, the images produced by the various CPR j®- +« - - - - »
algorithms become better dsincreases. At each acquisition
time, there is even a best possible CPR image that most of
these algorithms are able to produce if olllys large enough.
At T =10 ms andI’ = 20 ms, the best possible CPR images
are practically free of blur and distortion. At = 40 ms and
T = 60 ms, some blur and distortion remains near the top
and the bottom of the phantom. Fig. 2(c) and (g) shows the
best possible CPR images At= 20 ms and atl’ = 40 ms,
respectively. As usual, the best possible CPR imagés-ati0
ms and7 = 60 ms continue the trend in the respective
directions. However, af” = 60 ms the remaining artifacts
near the top of the phantom are so large that one is inclined
to call them unacceptable.
On the other hand, there are substantial differences between i
the various CPR algorithms with respect to their behavior 8R.3. (a) Best possible image produced by algorithm CPR-PF at 20

L grows from small to large. For example, algorithm CPRns. (b) Best possible image produced by algorithm CPR-P# at 40 ms.
DFE-NN, when L is small, produces images that are stillc) Iterated frequency map & = 40 ms. (d) Best possible CPR image at

a bit blurred. AsL increases, the images converge S|OW|§7 = 40 ms, recomputed with the iterated frequency map shown in (c).

but steadily toward the best possible CPR image. Algorithm

CPR-P exhibits a totally different behavior. Whéns below spHERE image as fast as possible. Thus, for each algorithm
some threshold valug, (which depends off" and presumably g acquisition time, an attempt was made to find out the
on (), the images produced by this algorithm show lows,mper of terms required for a reasonably good CPR or
frequency wavy artifacts. A& grows beyond the threShOIdSPHERE image, respectively. Table | lists the results for each

Ly, these artifacts disappear completely and the resumnguisition time and for each algorithm that could produce a

Images converge very rapidly to the best possible CPR 'ma%gasonably good image at this acquisition time. The columns

Algorithm CPR-DFE-T exhibits a similar but less pronounce ; ;
threshold behavior. The proper choice of the paramefers abeledL list the number of terms required for the reasonably

and 3, in (57)—(61) is critical for the performance of thing_Od image. The associated computation times are listed in the
algorithm. As 3, and 3, are related via (57), it suffices tOadjacent columns. The goodness of an imfigeas measured

choose only one of them. A good recipe, found experimentaly the relative errot} [£| — [fopc|[|/[|fop:|| where| - | denotes
is to set3, = L/N where N is either | \/QT/(2r)] or pc;‘lg‘gmse magmtude“ ~_|| denotes the_Euclldean norm in
L\/W/(?W)J _1and chosen such that- is odd. (Among C , andf, is the pertlnent bes§ possmle.CPR or SPHERE
other things, this choice ensures thatand,. are among the IMage. Taple | also lists the relatlv_e error in each case. The
71..) Algorithm CPR-DTE-NN requires extremely many term&&st possible CPR and SPHERE images were computed by
to produce images that come close to the best possible c@igorithms CPR-DFE-T and SPH-DFE-T, respectively, using a
image. Algorithm CPR-DTE-T behaves roughly like algorithnyery large number of terms. As the above measure of goodness
CPR-DFE-T. However, a simple rule for deriving good choicd§ sometimes misleading, it was combined with a subjective
of the parameters, or /3, from L or Q7 could not be found. judgment based on visual inspection. The step behavior of
Finally, algorithm CPR-P-r produces good magnitude imag#e P-class algorithms makes it easy to identify the number
at 7 = 10 ms and7 = 20 ms, but not atl’ = 40 ms and of terms required for a reasonably good CPR image. For the
T = 60 ms. Fig. 3(a) and (b) shows the best possible imag&sclass algorithms, which have a less marked step behavior,
produced by this algorithm &' = 20 ms and at/’ = 40 ms, this number of terms is less well defined and remains a little
respectively. The choice of the parameter in (88) is not ambiguous. For the table, the smallest possible number was
critical: a good choice isy; = 0.25. selected. For the best image quality, one or two more terms

The four SPHERE algorithms SPH-DFE-T, SPH-DTE-NNare needed. For the two DFE-T algorithms the paramgter
SPH-DTE-T, and SPH-P were also tested. Again, there \igas chosen as described above. For the two DTE-T algorithms
a best possible SPHERE image for each acquisition timgood values for3; were determined by trial and error. For
However, except atl’ = 10 ms, the image quality of the the NN-class algorithms, which exhibit no step behavior at
best possible SPHERE images is noticeably inferior to that all, the number of terms was chosen via (52) with= 2.5
the best CPR images obtained at the sdimeig. 2(d) and (h) for algorithm CPR-DFE-NN angs = 10 for the two DTE-
shows the best possible SPHERE image# at 20 ms and at NN algorithms. These choices provide a good compromise
T = 40 ms, respectively. Otherwise, the SPHERE algorithnisetween image quality and computation time.
behave roughly like their CPR counterparts. At T'= 40 ms and?’ = 60 ms, the table contains the results

In practice, one wants to compute a reasonably good CPRfar the three algorithms CPR-DFE-NN, CPR-DFE-T, and
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TABLE |
TesT ResuLTs

T =10ms, Q/(27) = 158 Hz, QT /(27) = 1.58 | T' = 20 ms, /(27) = 166 Hz, QT/(27) = 3.32
algorithm L runtime rel. error % comments | L runtime rel. error %’TL comments
CPR-DFE-NN | 4 34s 0.019 2.53 9 6.2s 0.017 2.71
CPR-DFE-T 3 415 0.015 316 By =2.50 9 6.4 s 0.010 271 (3, =225
CPR-DTE-NN | 16 9.7s 0.021 10.13 34 19.3 s 0.026 10.24
CPR-DTE-T 9 6.6 0.011 3.70 By =266 |11 79s 0.014 3.31 B =149
CPR-P 6 425 0.002 3.80 9 58s 0.009 2.71
CPR-P-r 3 3.1s 0.027 1.90 a; =0.25 6 39s 0.038 1.81 «; =0.25
SPH-DFE-T 7 7.1s 0.015 443 3, =350 | 12 11.1s 0.016 3.61 (8 =240
SPH-DTE-NN | 16 925 0.019 10.13 34 183 s 0.021 10.24
SPH-DTE-T 8 6.0s 0.016 506 8, =231 |14 9.7 s 0.010 422 8, =210
SPH-P 6 4.7 0.004 3.80 9 6.4s 0.010 2.71

T =40 ms, Q/(27) = 174 Hz, QT/(27) = 6.98 | T = 60 ms, Q/(27) = 179 Hz, QT /(27) = 10.72
algorithm L run time rel. error ‘;{TI comments | L run time rel. error %’—'TL comments
CPR-DFE-NN | 18 109 s 0.020 2.58 27 15.8 s 0.022 2.52
CPR-DFE-T 14 93 s 0.009 201 B, =136 |19 12.2 s 0.012 1.77 3, =136
CPR-P 16 95 s 0.005 2.29 22 12.6 s 0.018 2.05 round. errs.

CPR-P only. At these acquisition times, algorithm CPR-P-r
and all SPHERE algorithms were unable to produce acceptable
images at all, algorithm CPR-DTE-NN was definitely too slow,
and algorithm CPR-DTE-T was discarded because it lacks
a known practicable way to determine good values for its
parameters.

With respect to image quality per number of terms, algo-
rithms CPR-DFE-NN, CPR-DFE-T, and CPR-P are clearly the
best among the tested CPR algorithms. Algorithm CPR-P-r is
the fastest, but restricted to images with small and medium
size off-resonance artifacts. At = 60 ms, algorithm CPR-P
begins to suffer from rounding errors, but in this regime the
CPR approach, as such, is already of limited value. Among
the SPHERE algorithms, algorithm SPH-P is the clear winner.

The table also lists the quantiyrL/(QT), which is the
maximum value of the parametgrthat would producd. via
(52). The results suggest that might be chosen as in (52),
whereg depends on the algorithm and is otherwise constant or §
a slowly varying function of?7" that may be predetermined
and tabulated.

An attempt was made to improve the best possible CPR
image at?” = 40 ms by using an iterated frequency map, as
indicated at the end of Section Il. Fig. 3(c) and (d) shows the
iterated frequency map and the recomputed best possible CPR
image, respectively. The distortion near the top of the phantom
has disappeared, but some ripples remain. —

CPR with post-iteration was also tried, but did not yield
satisfactory results. In hindsight, this may be understood. The

iteration attempts to change the image at places where CPRFlgy4- (2) Standard spiral MR image of a human brain obtaineéd &t 20
(b) Associated frequency map. (c) Best possible CPR image. (d) Best

. ) ms,
itself is not very accprqte, but thes’_e are also the places Whﬁ({%ible SPHERE image. (e) lterated frequency map. (f) Best possible CPR
the frequency map is likely to be inaccurate. image recomputed with the iterated frequency map shown in (e).

The better of the CPR algorithms were also applied to a
standard spiral MR image of a transverse cross section of&f t0M = 15, resulting in a maximum gradient strength of
human brain. To obtain this image, the excitation phase of taBout 20 mT/m. Again, the image size waS = 256 and
pulse sequence was augmented by a standard fat suppreséierpixel sized = 1 mm. The standard image is shown in
technigue [36]. The flip angle of the excitation pulse was nottg. 4(a). The associated estimated frequency map is shown
60°, the slice thickness 7 mm, the acquisition tifie= 20 ms, in Fig. 4(b). Its frequency span i8/(2r) = 388 Hz so that
and the repetition time 1000 ms. The number of spirals w&¥'/(2x) = 7.67. The variation of the frequency map in and
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near the nasal cavities is extreme. The best possible CRR K. F. King and P. R. Moran, “A unified description of NMR imaging,

and SPHERE images associated with this frequency map are data-collection strategies, and reconstructiovi¢d. Phys.yvol. 11, no.
i : . 1, pp. 1-14, 1984.

shown in Fig. 4(c) and (d), respectively. The improvement OTS] R. T. Vlaardingerbroek and J. A. den Boekagnetic Resonance

the CPR image near the eyes and at the back of the head Imaging. Berlin, Germany: Springer-Verlag, 1996.

is noticeable. Again, the appearance of the SPHERE imad@l D: C. Noll, C. H. Meyer, J. M. Pauly, D. G. Nishimura, and A. Macovski,
. . . . ‘A homogeneity correction method for magnetic resonance imaging with
is less satisfactory than that of the CPR image. Both images time-varying gradients,JEEE Trans. Med. Imagyol. 10, pp. 629—637,

have also changed significantly in and near the nasal cavities, Dec. 1991.

but given the strong variation of the frequency map therel?! D: C. Noll, J. M. Pauly, C. G. Meyer, D. G. Nishimura, and A. Macovski,
Deblurring for non-2D Fourier transform magnetic resonance imaging,

the accuracy of the images ir_1 this region may be questioned. \agnetic Resonance Mediol. 25, pp. 319-333, 1992.
Fig. 4(e) and (f) shows the iterated frequency map and thi] L.-C. Man, J. M. Pauly, and A. Macovski, “Multifrequency interpolation

recomputed best possible CPR image, respectively. The image LO‘; f?ggi’%r;s‘{gg?"e correctionMagnetic Resonance Medol. 37,

has changed in and near the nasal cavities, but its accuragy y. M. Kadah and X. Hu, “Simulated phase evolution rewinding
there remains doubtful. (SPHERE): A technique for reducin@, inhomogeneity,”Magnetic
Resonance Medyol. 38, pp. 615-627, 1997.
[10] R. Bhagwandien, R. van Ee, R. Beersma, C. J. G. Bakker, M. A.
Moerland, and J. J. W. Lagendijk, “Numerical analysis of the magnetic
VIil. CONCLUDING REMARKS field for arbitrary magnetic susceptibility distributions in 2Dfagnetic

The results reported in this paper suggest that the approx- Resonance Imagyol. 10, pp. 299-313, 1992.

. . . . . . 11] , “Numerical analysis of the magnetic field for arbitrary magnetic
imate inversion of the MR transform via CPR is a V'ablé susceptibility distributions in 3D,Magnetic Resonance Imagyol. 12,

method to remove off-resonance artifacts from standard spiral pp. 101-107, 1994.
MR images. The approach allows one to reduce the nump&l T- S. Sumanaweera, G. H. Glover, T. O. Binford, and J. R. Adler, "MR

. . . . susceptibility misregistration correctionEEE Trans. Med. Imagvol.
of spirals by a factor between four to eight and still obtain 75", 551”559, June 1993.

sharp spiral MR images. [13] C. E. Hayes and P. B. Roemer, “Noise correlations in data simultane-

The three CPR algorithms CPR-DFE-NN. CPR-DFE-T ously acquired from multiple surface coil array§fagnetic Resonance
) ! Med., vol. 16, pp. 181-191, 1990.
and CPR-P can be recommended. Algorithm CPR-P-r 4] w. A. Edelstein, J. M. S. Hutchison, G. Johnson, and T. Redpath, “Spin-

appropriate when speed counts most. warp NMR imaging and applications to human whole-body imaging,”

i ; i Phys. Med. Biol.yol. 25, pp. 751-756, 1980.
The resulis also suggest ihat the approximate inversi M. J. Stehlinget al., “Whole-body echo-planar MR imaging at 0.5 T,”

of the MR transform by SPHERE is less accurate than n] Radiology,vol. 170, no. 1, pp. 257-263, 1989.
approximate inversion by CPR, at least in the case of spiféé] K.Butts, S. J. Riederer, R. L. Enman, R. M. Thompson, and C. R. Jack,

; ; ; ; “Interleaved echo planar imaging on a standard MRI systéiagnetic
MRI. For Cartesian MRI the situation may be different, as Resonance Medyol. 31, pp. 67-72, 1994.

SPHERE may be able to make a better use of distorted| s.-G. kim, X. Hu, G. Adriany, and K. Ugurbil, “Fast interleaved echo-

frequency maps [9]. planar imaging with navigator: High resolution anatomic and functional
The recommendable CPR algorithms are so fast that they [7a9¢s & 4 Tesla,Magnetic Resonance Mediol. 35, pp. 895-902,
may be executed in real time on a suitable embedded parajigl r. s. Likes, “Moving gradient zeugmatography,” U. S. Patent 4 307 343,

computer comprised of a small number of state-of-the-art 1981

1
. . . [19] B. C. Ahn, J. H. Kim, and Z. H. Cho, “High-speed spiral-scan echo
microprocessors or digital signal processors. planar NMR imaging—I,"IEEE Trans. Med. Imagyol. MI-5, pp. 2—7,

The required frequency map can be estimated from two jan. 198s.
standard images in the usual way. In favorable cases,[3@] C. H. Meyer, B. S. Hu, D. G. Nishimura, and A. Macovski, “Fast

. . . spiral coronary artery imagingMagnetic Resonance Medgl. 28, pp.
is conceivable to extract the frequency map from a single 202213, 1992.

standard image. Improved frequency maps may be obtained P. C. Lauterbur, “image formation by induced local interaction: Ex-
iteratively, although the computational cost is high. Theoreti- amples employing nuclear magnetic resonandéture, vol. 242, pp.

N . 190-191, 1973.
cally, the approximation underlying the CPR approach couleh) p\ansfield and P. G. MorrigyMR Imaging in Biomedicine. New
be overcome in various ways, but in practice the difficulty of  York: Academic, 1982.
obtaining an accurate frequency map limits the value of su! A B. Kerr, J. M. Pauly, B. S. Hu, K. C. Li, C. J. Hardy, C. H. Meyer,
A. Macovski, and D. G. Nishimura, “Real-time interactive MRI on a
attempts. conventional scannerfMlagnetic Resonance Medgl. 38, pp. 355-367,
1997.
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