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Accelerating Dynamic Spiral MRI by Algebraic
Reconstruction From Undersampled k-t Space
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Abstract—The temporal resolution of dynamic magnetic reso-
nance imaging (MRI) can be increased by sampling a fraction of
k-space in an interleaved fashion, which introduces spatial and
temporal aliasing. We describe algebraically and graphically the
aliasing process caused by dynamic undersampled spiral imaging
within 3-D zy f space (the Fourier transform of k. k,t space) and
formulate the unaliasing problem as a set of independent linear in-
versions. Since each linear system is numerically underdetermined,
the use of prior knowledge in the form of bounded support regions
is proposed. To overcome the excessive memory requirements for
handling large matrices, a fast implementation of the conjugate
gradient (CG) method is used. Numerical simulation and in vivo
experiments using spiral twofold undersampling demonstrate re-
duced motion artifacts and the improved depiction of fine cardiac
structures. The achieved reduction of motion artifacts and mo-
tion blur is comparable to simple filtering, which is computation-
ally more efficient, while the proposed algebraic framework offers
greater flexibility to incorporate additional algebraic acceleration
techniques and to handle arbitrary sampling schemes.

Index Terms—Algebraic reconstruction, dynamic imaging, fast
imaging, spiral cardiac magnetic resonance imaging (MRI), tem-
poral acceleration.

1. INTRODUCTION

YNAMIC magnetic resonance imaging (MRI), which cap-
Dtures temporal variations of objects of interest, is receiving
increasing interest as an effective diagnostic tool. It has been
proven to be particularly useful for cardiac imaging since the
human heart involves a high degree of dynamic motion [1],
[2]. Cardiac gated scanning during a breathhold can achieve
high spatial and temporal resolutions but is affected by arrhyth-
mias and the breathhold requirements. In some cases, the aperi-
odic pattern itself may represent actual diagnostic information.
Recent advances in MR hardware and pulse sequences have
made it possible to perform dynamic cardiac imaging without
gating or breathhold [3]. However, many applications still de-
mand higher temporal resolution, which has remained an im-
portant research topic.

One way to increase the temporal resolution of dynamic MRI
is by sampling only a fraction of k-space. The fundamental prin-
ciple of these methods is to exploit information redundancy,
and they can be divided into two groups based on the source
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of the redundancy. The first group includes partial k-space re-
construction [4] and parallel imaging [5]-[7], where the redun-
dancy source is inherent properties of the image or external
hardware. Dynamic properties of moving objects are irrelevant
to these methods, and they can be applied to both static and dy-
namic imaging. The second group utilizes information redun-
dancy from temporal correlations of dynamic images. Keyhole
methods and reduced-encoding MR imaging by generalized-se-
ries reconstruction (RIGR) assume that temporal variation is pri-
marily from the central portion of k-space [8]-[10]. Similarly,
reduced field-of-view (FOV) reconstruction utilizes the fact that
only a limited region of an image undergoes substantial varia-
tion over time [11]-[13]. That is, the information from relatively
stationary regions in object space is considered to be redundant.

The second group, introduced above, was advanced by a
novel reconstruction based on temporal filtering called UN-
aliasing by Fourier-encoding the Overlaps using the temporalL
Dimension (UNFOLD) [14], [15]. By undersampling k-space
in an interleaved fashion over time, UNFOLD displaces aliased
signals along the frequency axis and recovers the original
signal using a temporal low-pass filter. Further acceleration is
achievable with the k—t broad-use linear acquisition speed-up
technique (k—t BLAST), which uses training data as prior
information along with the interleaved sampling function
[16]. Conceptually, UNFOLD and k-t BLAST reduce the
information redundancy by economically using k-t space (the
combination of k-space with a time axis [17]). Until now, these
two methods have been used mainly with Cartesian k-space
trajectories, due to the simplicity of describing and correcting
for the aliasing produced by rectilinear sampling patterns (refer
to [18] as a non-Cartesian example). However, spiral readouts
are appropriate for certain applications because they have
good flow properties [19] and are time efficient, which enables
further increases in spatial and/or temporal resolution when
used in conjunction with undersampling techniques.

In this paper, we describe the aliasing process for spiral
sampling trajectories and formulate unaliasing as an inverse
problem in 3-D zyf space, the transform of k,k,t space. In
general, any aliasing caused by the violation of the Nyquist
condition cannot be resolved under arbitrary condition, which
manifests, in our case, as numerically underdetermined system
matrices. We show that the aliasing is formed such that only
a few temporal frequency components are coupled, and the
rank deficiency problem is isolated in each set of temporal
frequencies. From the fact that the support region is bounded
in zyf space, a zero assumption in the solutions is used to
condition each linear system. We inspect how the size and the
location of assumed zeros affect the degree of rank deficiency
by borrowing ideas from the Cartesian undersampling case.

0278-0062/$25.00 © 2007 IEEE
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Fig. 1. Illustration of dynamic undersampled spiral imaging in xy f space. From twofold undersampling, ring-shaped sidelobes are shifted to the Nyquist fre-
quency. Since mainlobe and sidelobes are confined to dc and the Nyquist frequency respectively, the solutions of only two temporal frequencies are coupled to

generate aliasing at one temporal frequency.

Finally, the proposed method is validated through numerical
simulations and in vivo spiral cardiac MRI experiments.

II. THEORY

During dynamic MRI, k-space data of moving objects are ac-
quired according to a specific sampling function at different time
points. The £k, t space should be considered as the working
space of data acquisition in which a sampled object Ry, &, ¢ is
expressed as an original object I}, r,+ multiplied by a sampling
function S, ¢

Ity (ko by, t) - Skokyt(kay by, t) = Ri iyt (kas by, t). (1)

In the reciprocal domain called zy f space, the above relation
becomes

Imyf(xayaf) *3 Smyf(xayvf) :nyf(wvyaf) 2)

where S, r(z,y, f) = f;l(Skm k,t), the 3-D inverse Fourier
transform of the sampling function, is a point spread function
(PSF), and 3 denotes the 3-D convolution operator. In the rest
of this paper, all operations are in zy f space and the subscript
zy f will be omitted.

When a fraction of k-space is scanned in a time-interleaved
fashion, the PSF sidelobe has different phase at successive time
points, with the pattern depending on the acquisition order.
Aliased signals are shifted along the temporal frequency axis,
which makes it easier to separate the original signal from the
aliased ones. The modulation phenomenon of the PSF can be
proved in a straightforward way in Cartesian undersampling
[14]. Particularly in twofold undersampling, segmenting an ar-
bitrary k-space trajectory which satisfies the Nyquist condition
into two subsets and sampling them alternately will lead to
modulation of the PSF. Since the summation of the two subsets
induces only mainlobe within FOV, the two PSF sidelobes
should amount to zero, which means that the two sidelobes
have opposite phases.

The top of Fig. 1 shows an example object, the PSF associ-
ated with spiral twofold undersampling, and the corresponding
aliasing pattern in 3-D zy f space. It is assumed that only the
central part of the object is moving. Once the PSF is described
in this 3-D space, the resulting aliasing can be understood as
a 3-D convolution of the original object with its mainlobe and
sidelobes.

A. Algebraic Formulation of Aliasing

The 3-D convolution (2) can be formulated as a linear ma-
trix system. However, solving the inversion problem as a whole
is impractical on a conventional workstation due to memory re-
quirements. Also, the sparseness of the PSF remains unexplored
in the 3-D convolution formulation. Because of the temporal
modulation of the PSF in twofold undersampling, the mainlobe
and sidelobe are strictly confined to dc and the Nyquist fre-
quency, respectively, as shown in Fig. 1. Then, we can express
the 3-D convolution as

1=0 p=0 ¢=0
L-1[N-1N-1
=y l I10(p,q)SY =D (z — p,y — q)
=0 Lp=0 ¢=0
L-1
- [Im %o S(f—l)}
1=0
= 1) 4y §O) 4 [(F=5) 4, §(5) 3)

where () and S denote the original signal and the PSF at
temporal frequency f = [, and %o denotes 2-D linear con-
volution. In the third line of (3), the initial 3-D convolution
is expressed as the summation of 2-D convolutions. Further-
more, only two temporal frequency terms (S(©) and S(%/2)) are
nonzero, and the equation therefore reduces to the last expres-
sion in (3).
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If the 2-D convolution matrices associated with S(® and
S(IL/2) are A; and A,, the aliasing from twofold undersam-
pling can be written as

NINAE
Ay Ay [Xpyz|

where x; = (1), y_yoyq and by = (RO) v ve s
i.e., N2 x 1 column vectors in which the elements of 7V and
R® are stacked in a raster-like fashion. Note that only two
temporal frequencies I()) and 1(+(L/2)) are coupled into the
same linear system. For example, the aliasing at the Nyquist fre-
quency is generated from the dc and the Nyquist frequency com-
ponents which are convolved with the mainlobe and the side-
lobe, respectively (see bottom of Fig. 1).

The generalization of this algebraic formulation into higher
order undersampling is straightforward. The PSF from m-fold
undersampling contains nonzero signals at only m temporal fre-
quencies f = 0,(L/m),---,(m — 1/m)L. If we represent the

b,
1=0,1,....,L/2—1
{bl%] /
“)

corresponding 2-D convolution matrices as A1, Ay, -+, Ay,
then the generalized version of (4) is written as
A1 Am e AQ X bl
Ay Ay As X+ L bz
Am Am,1 e A1 Xl+%L bl+%L
(52)
or
M — p® L
x\ =b l=0,1,---,— — 1. (5b)
m

The solution of every (L/m)th frequency is coupled into the
same linear system, and a total of (L/m) such systems can be
solved independently.

In general, the aliasing described by (2) cannot be easily re-
solved since the corresponding linear equations are ill posed.
The separability of the solutions in (4) and (5) indicates the in-
sufficient rank problem is isolated in each set of aliased temporal
frequencies. The next section discusses a method to condition
each set of equations.

B. Rank Analysis and Zero Assumption

The existence of a unique solution to (5) is directly related to
the rank of the system matrix A. The solution can be uniquely
determined only if the rank of the system matrix is equal to the
number of unknowns. The direct rank analysis of the system
matrix associated with spiral undersampling is quite compli-
cated due to the complexity of its PSF. To obtain intuition about
rank deficiency, we will borrow ideas from Cartesian twofold
undersampling and show that the degree of rank deficiency de-
pends on the overlapped area between the nonzero signals at two
aliased temporal frequencies.

Fig. 2 shows the image view of the system matrix defined
in (4) associated with the Cartesian twofold undersampling and
the corresponding solutions 7() and T¢+(L/2) A is diagonal
and A, has two off-diagonal lines since S(°) has one impulse

o > X
%, “,
*, “ P
“ o, L
o, *,
o “, v (1)
* 1 I'(x,y)
%, 0, y ’
“, *,
%, %,
%, N QI
e "
A= 3 %
* %, *
%, *,
“, *, A
% %
'0,‘ ‘00‘ QZ
*, *,
“ K I+L12
o % %, N I( +L12) ( )
, ", X,y
% "
%, ,
e *,
”‘o, % v P,
%, % - N >
- N z > N B >

Fig. 2. Tllustration of the system matrix in Cartesian twofold undersampling
with the solution for two coupled temporal frequencies. Rank is half the ma-
trix dimension since the first and fourth quarter-columns (gray) are identical,
and the second and third quarter-columns (white) are identical. To condition
rank deficiency, zeros can be assumed in certain regions of solution. P, and
Qr(k = 1,2) represent region of zero assumption. Accordingly, P° and
Q1°(k = 1,2) represent support regions of solution.

at the object domain origin and S©/2) has two impulses at the
edge in the phase encoding direction. The rank of A is exactly
half the matrix dimension. Assuming I() has the size of N x N
and thus the dimension of A is 2N? x 2N2, the first-quarter
columns of dimension 2N?2 x (N?/2) are the same as the last
quarter columns, and the second quarter columns are the same
as the third quarter. These repeated columns indicate that the
overlap between the upper (or lower) half of () and the lower
(or upper) half of 1U+(E/2)) occurs in both R and RU+(E/2))
Consequently, any aliased position forms a pair with another
location to produce a single effective rank.

A good candidate for mitigating this rank deficiency is
assuming zeros in a certain region of the solution since the
solution’s support region is bounded in zy f space. Then, the
columns of the system matrix corresponding to the position of
zero assumption will be discarded. A key question about this
assumption is the effect of the size and the location of assumed
zeros on the rank deficiency. For notational convenience,
we define four sets of zero locations Py, and Qr(k = 1,2)
and four sets of the corresponding support regions P° and
Qr“(k = 1,2) (Fig. 2)
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Then, the matrix rank r and the number of unknowns y are ex-
pressed as

r=N?— (PN P +]Q1 N Q2|
y =2N? — (|P1| + |Po| + |Q1] + |Q2)). (®)

The degree of rank deficiency can be written as

r—y=|PLUPy|+|Q1UQs| — N?
[(PL° N Pof) |+ 1(Q1° N Q)| = N?
= —|P°N R —]Q:1°N Q. )

In Cartesian twofold undersampling, the upper half and the
lower half of I(!) are superimposed with the lower half and the
upper half of IU+(E/2) | respectively. Since |P1° N Py°| and
|Q1° N Q2°| represent the area of the overlap between nonzero
signals of T() and T(*+(L/2)) (9) tells us that the degree of rank
deficiency depends on the size of this overlapped region.

In this paper, these properties are assumed to carry over into
the spiral undersampling without a rigorous proof. Since the
sidelobe of the spiral undersampling is ring shaped, the radial
extents of the support regions in 1) and 7U+(E/2)) are critical to
the overlapping area. Hence, a support region of circular shape
will be used for specifying the zero assumption in each I,

The zero assumption, in its function, is similar to the tem-
poral filtering used in UNFOLD. It should be noticed that the
solutions are obtained from the algebraic processes, which
enables incorporation of additional algebraic operation into
the proposed framework. The regularization mentioned in
the next section can be considered as a simple form of such
incorporation.

C. Pseudoinverse and Regularization

With the zero assumption, the linear system becomes overde-
termined and the conventional inverse does not exist. The op-
timal solution in the minimum norm least square sense can be
obtained by solving the normal equation A¥Ax = AFb.
(AFA)™" can be computed only if all columns of A are in-
dependent. However, A” A will still be ill posed when the size
of the zero assumption is insufficient.

We need regularization which changes the original problem
such that the modified system becomes stable while still being
reasonably close to the original one. We use a popular type of
regularization called Tikhonov filtering which produces a regu-
larized linear system written as

(APA +pI)x = A"Db (10)

where the regularization coefficient p balances the tradeoff
between solution stability and accuracy. The addition of pI
is equivalent to replacing the original cost function with
|Ax — b||* + p||x||>, which adds weighting on the norm of
the solution vector.

D. Iterative Solution

With a reconstructed image of N x N pixels, the dimension of
the system matrix with twofold undersampling will be (2N?) x
(2N?) as seen from (4). Moreover, the number of operations
required for direct computation of its inverse is of order O(N©).
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One common way to overcome this obstacle is using an iterative
method to solve the inverse problem. In this paper, the conjugate
gradient (CG) method, a classical iterative algorithm, is used. It
is well known that CG guarantees an exact solution only if the
system matrix is symmetric and positive definite, which can be
easily proved for the regularized system matrix A¥ A + pI.

The most computationally demanding part in each kth itera-
tion of CG is the matrix-vector multiplication (A A 4 pI)x(*)
which requires the storage of (2N? x 2N?) complex matrices
and O(N*) operations. Since the product Ax originates from
the combination of several 2-D convolutions as described in (3)
and (4), it can be rewritten as

Aix; + A2Xl L
Ax= AT At ]

(5(%) o IO 4 S0 4, ](H%))

NxN—N2x1

NXxN—N?2x1

(11)
Each of the four 2-D convolutions involved in (11) can be com-
puted by

S o I = Fy H[Fo(S)Fa(I)] (12)

where F» and F; ' denote the forward and the backward 2-D
Fourier transforms and all superscripts are discarded for brevity.

The additional multiplication with A# can be computed
in a similar way. Since 2-D FFT has the complexity of
O(N?1log N), the computational load at each iteration can be
reduced by a factor of O(N?/log N).

One should pay attention to the boundary effects of linear
convolutions denoted by %, above. The PSF S(®) and S(£/2)
have infinitely many sidelobes along the radial direction. If only
the nominal FOV (of size N x N) is taken and convolved with
the solutions () and I(+(E/2)) the signal produced by the
sidelobe outside the FOV will be ignored. Assuming that all
nonzero signals exist within the FOV, including the sidelobes
within 2 X FOV will be enough for handling all aliased signals
introduced in the FOV. For the implementation of the 2-D con-
volutions, the PSF of 2 x FOV (2N x 2N) is prepared and the
solution I() is zero-padded to generate a 2 x FOV image. After
computing the extended 2 X FOV convolutions using (12), de-
sired convolutions free of boundary effects can be obtained by
cropping the 2 x FOV convolution results.

III. METHODS

A. Numerical Phantom Simulation

A dynamic numerical phantom was used for the validation of
the proposed method applied to spiral twofold undersampling.
The phantom, which resembles a short axis cardiac image, in-
cludes a chest wall, right and left ventricles, a myocardium, and
papillary muscles represented by two dots (Fig. 3). The ventri-
cles and the myocardium keep contracting and expanding pe-
riodically based on the cosine function with period 1 s. The
outer and inner diameters of the myocardium change such that
the area of the myocardium should be conserved. A total of six
spiral interleaves are used with a matrix size of 128 x 128. Each



SHIN et al.: ACCELERATING DYNAMIC SPIRAL MRI BY ALGEBRAIC RECONSTRUCTION 921

e

diastole systole

Fig. 3. Diastolic and systolic phases of the dynamic numerical phantom. The
phantom was designed to resemble the heart in a short axis view, with the size
of the left ventricle changing sinusoidally.

y

Nyq

Fig. 4. Cross-sectional view of zero assumption in numerical phantom study.
The support region is cylindrical in xy f space.

set of odd and even order interleaves is assumed to be sampled
simultaneously so that motion artifacts within each set are being
neglected. The time interval between each set of interleaves is
set to 48 ms which produces, for a heart rate of 60 beats per
minute, roughly 21 frames per cardiac cycle from twofold ac-
celeration. For error quantification, we use the maximum error
and the normalized root-mean-square (rms) error expressed as

2
N-1N—-1] (t) (8
) Zi:o ijo Tij ~ 9ij
Brivs = N-1N-1] #)]? (13)
2izo ijo 0;j
(t) : () ()
where Ery g denotes rms error at time ¢. 7; ; and o; ; represent

the (¢, 7)th pixel intensity of the reconstructed image and the
true image at time ¢, respectively.

The cross-sectional view of the zero assumption is shown
in Fig. 4. Since we know that the most dynamic part of the
phantom lies inside half the FOV, the remaining outer region
is assumed to be zero, which can be applied to all pairs of I()
and T(H(/2)) "except dc and the Nyquist frequency (I = 0).
The whole region of 1(°) must be nonzero and 1(%/?) is likely
to have small nonzero values in its support region. In this case,
the area of assumed zeros is insufficient and the corresponding
system matrix will be ill posed. In this paper, we simply assume
that 7(*/?) is zero and take the dc of the aliased signal R(®) as
the solution of 7(%),

For comparison purposes, reference images were generated
using sliding window reconstruction [20] and UNFOLD-like
filtering which does not involve algebraic inversion. To make
the reconstruction time points of the sliding window reconstruc-
tion coincide with those of UNFOLD-like filtering and the pro-
posed method, the image at each time point is generated from
the raw data at the current time point and the average of the
raw data from the previous and next time points. UNFOLD-like

y

A
- » f
-fNyq - fNyq

Fig. 5. Cross-sectional view of the zero assumption in in vivo experiments. The
support region resembles a truncated cone in zy f space.

filtering is implemented using the same support region in zy f
space shown in Fig. 4.

B. In Vivo Experiments

Experiments were performed on a 1.5-T GE Signa EXCITE
system, with 22-mT/m maximum gradient amplitude and
77-T/m/s maximum slew rate. A phased array coil with four
channels was used for signal reception, and the raw data from
two channels were used for reconstruction. Real-time (free
breathing and ungated) spiral balanced SSFP cardiac imaging
was conducted [21]. The imaging protocol used 36 spiral
interleaves, an in-plane resolution of 2.4 X 2.4 mm, a slice
thickness of 10 mm, a 60° flip angle, and a repetition time (TR)
of 6.4 ms. The gradient waveforms were designed such that
both the zeroth and first moments are zero between RF pulses
to ensure steady-state signal coherence and to avoid in-plane
flow effects. A total of 100 image frames were reconstructed
from the proposed method, which used a set of odd or even
order interleaves alternately to form one image frame.

Since the numerical rank of the system matrix depends on
the radial extents of the support region in /", as mentioned in
Section II, it is reasonable to use a stack of circles for the zero
assumption in zy f space. Then, the design parameter to be de-
termined is the profile of the diameters along the frequency axis.
In this paper, a ramp-shaped profile was used, assuming the tem-
poral variation of images to be dominant in the central region
(Fig. 5). Note that the high frequency region, which amounts to
16% of the whole bandwidth, is filtered out since in this band
there will be strong aliased signals arising from the sidelobe.
The linear systems associated with the zero assumption dis-
played in Fig. 5 will be slightly ill posed. We observe that this
loose zero assumption produces more robust results than a tight
support region which enables better conditioning but fails to
truly contain all nonzero signals. Reference images were gener-
ated using the sliding window reconstruction and UNFOLD-like
filtering which used the same support region shown in Fig. 5.

IV. RESULTS

A. Numerical Phantom Simulation

Normalized rms errors, maximum errors, reconstructed
images, and residue images from the sliding window recon-
struction, UNFOLD-like filtering, and the proposed method are
shown in Fig. 6. The proposed method produces smaller errors
than the sliding window reconstruction in terms of both rms
and maximum values. The proposed method produces compa-
rable but smaller errors compared to UNFOLD-like filtering.
The largest improvement is in maximum errors because of



922

(a)

0.12 =+=sliding window 1t =+=sliding window
----- filtering ====+ filtering
o1l = proposed method | — proposed method
' A PR . 08 f
. I A LY . N N . .
» 008[ jl H A _l‘-l I :“ n ,"\_ = N i"\ ,’-\ it N AR n n
2 A A AR R S AN S AN S osf Iy fi gy gt it it iviy i A
o ST O I T S A T O O o A AR A
goosr iyt pigliijiigh AR AN R AR A N RN A AR
R T TRV TR R - AR R RN AT RTRN R
N U T G A A R TIRY ﬂ 1 E YR T AR VAR AR
L |
0.02 "o.". R ORI o", B RN :. .:. A
filtering

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 7, JULY 2007

Fig. 6. Simulated phantom results using sliding window reconstruction, UNFOLD-like filtering, and the proposed method. (a) Normalized rms error and maximum
pixel-by-pixel error illustrate that the proposed method has smaller error than sliding window reconstruction. Compared to filtering, slight improvements are
observed because of regularization effects. There is a large periodic increase in error in sliding window reconstruction when motion is the fastest (twice per cycle).
Periodic increase in errors for filtering and the proposed method is related to the size of the dynamic region approaching the edge of the support region at diastolic
phases (once per cycle). (b) Representative reconstructed images and residue images from the three consecutive frames are shown for three reconstructions. Residue
images are defined as the difference between the reconstructed images and the known true images and are displayed using harsh windowing.

regularization effects. The large error fluctuation of the sliding
window reconstruction arises from the fact that the ventricle
and myocardium signals change sinusoidally. The motion arti-
facts are small around the time points of the maximum and the
minimum of the cosine and large at phases between them. The
image of frame number 29 that corresponds to the highest slope
of the cosine function shows the largest motion blurring, which
is verified by the corresponding residue image. Using filtering
and the proposed method, the temporal blurring of moving
structures is reduced due to increased temporal resolution.

Filtering and the proposed reconstruction produce small pe-
riodic error fluctuations which have local maxima at each dias-
tole. In diastole, when the simulated heart is at its widest, the
extent of the dynamic region exceeds the specified support re-
gion. In this simulation, the periodic error increase is the result
of an incorrect zero assumption which designates some nonzero
pixels outside the support region.

B. In Vivo Experiments

Fig. 7(a) shows systolic short axis images (20th frame) recon-
structed from sliding window reconstruction, UNFOLD-like fil-
tering, and the proposed method. The image difference is subtle,
but a slight improvement can be found from the examination of
fine cardiac structures. Fig. 7(b) shows the signal intensity pro-

files through the moderator band in the right ventricle. The paths
of the signal profiles are the missing parts of the horizontal and
vertical lines shown in Fig. 7(a). The band is most sharply cap-
tured using the proposed method, followed by filtering, and fi-
nally sliding window, which matches the expected order of least
motion blur to most motion blur.

Another set of systolic short axis images (59th frame) is
shown in Fig. 7(c) using harsh windowing to visualize motion
artifacts which appear as background whirling. The average
signal intensity in the region of interest (ROI), specified by
the dotted box, is plotted as a function of time in Fig. 7(d).
The mean values fluctuate at the heart rate, which implies that
the artifacts in the ROI relate to cardiac motion. The proposed
method reduces motion artifacts as well as UNFOLD-like
filtering compared to sliding window reconstruction.

Reconstruction was performed in MATLAB on a Dell 8400
desktop computer (3.6 GHz Intel processor, | GB RAM). Pro-
posed reconstruction of 100 temporal frames, using two coils,
required approximately 5 min of CPU time.

V. DISCUSSION

The most critical component in the implementation of the
proposed method is determining the shape of the zero assump-
tion in zy f space. If the zero assumption is insufficient (i.e., the
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Fig. 7. In vivo experiment results using sliding window reconstruction, UNFOLD-like filtering, and the proposed method. (a) To evaluate improvement in the
depiction of fine cardiac structures, signal profiles across the moderator band of the right ventricle (black cross-hairs) were measured (20th time frame). (b) Intensity
profiles indicate sharp depiction of the moderator band in the order of the proposed method, filtering, and the sliding window. (c) To visualize motion artifact
reduction, short axis images from the three methods were windowed harshly (59th time frame) and signal in a region outside of the body (white box) was measured.
(d) Mean signal within the box is plotted as a function of time illustrating that the proposed method reduces motion artifacts as well as filtering.

diameters of the circular windows in Fig. 5 are large), the nu-
merical rank of the corresponding linear systems will be smaller.
An excessive zero assumption forces incorrect zeros into certain
regions of the solution. For example, since in vivo data are al-
ways noisy, applying a zero assumption even in the stationary
region of the FOV will cause noise amplification in support re-
gions [22]. In reality, it is difficult to achieve sufficient condi-
tioning and a completely accurate zero assumption. From our
experience, using an insufficient zero assumption with insuffi-
cient conditioning produces more robust results than using an
excessive assumption with sufficient conditioning. During im-
plementation, we manually specified the shape of the zero as-
sumption by referring to the signal distribution in zyf space
obtained from the sliding window reconstruction. Support re-
gions were made larger than the distribution from the sliding
window reconstruction which underestimates high temporal fre-
quency components. Automatically determining proper shapes
of support regions is still an open question and will be applica-
tion dependent.

The computational complexity of the CG method employed
in the proposed method is of practical importance. In the in vivo
studies, we observe that CG converges at around eight itera-
tions for one set of linear equations, which should be repeated
L /2 times for whole sets of systems. One design parameter af-
fecting the convergence rate is the extent of the support region
in I If it becomes large, the corresponding system will be
more ill posed, which will increase the required number of it-
erations. The regularization coefficient p is another parameter
that influences the convergence rate. A large p increases the
values of the diagonal elements of the regularized system ma-
trix [refer to (10)], decreasing the matrix condition number, and
vice versa. In the in vivo studies we used the coefficient value

p = 0.01, which is 0.46% of the temporal dc values averaged
over the FOV. We observe that when p = 0.001 is used instead,
the required number of iterations becomes around 16 with little
change in image quality. When a larger value p = 0.1 is used,
the iteration number is reduced to 4, but the restored images are
smoothed more.

One assumption used in the analysis of the aliasing from
spiral undersampling is that a group of interleaves are collected
at the same time, which is not true. The analytic model used in
this paper will be less accurate when larger numbers of inter-
leaves are combined to produce a single time frame. In fact, the
true distribution of aliased signals in zy f space can be obtained
by considering a single spiral acquisition as a single time frame.
Combining a set of spiral interleaves is equivalent to applying
sinc weighting followed by aliasing along the frequency dimen-
sion. The dilation of the sinc function is determined according
to the number of interleaves combined into a single time point.
Of course, the system equations derived without combining in-
terleaves will be the most accurate, but in this case the highest
temporal frequency to be resolved becomes larger without the
increase in system rank. The tradeoff between the accuracy of
system equations and the increased dimensionality of the solu-
tion needs to be explored in future works.

The twofold acceleration covered in this paper might be a
trivial example considering the involved numerical complexity
of the proposed approach. The same problem can be solved via
UNFOLD-like filtering which is free from an algebraic inver-
sion, as shown in Section IV. The numerical simulation showed
that filtering produces subtle increases in rms error, and more
apparent increases in maximum error, which can be explained
by the regularization effects of the proposed method. The in vivo
study showed that the reduction of motion blur and background
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whirling with the proposed method is comparable to filtering.
Still, twofold acceleration is not the ultimate goal and should be
considered as a simple example to test the proposed algebraic
model. One advantage of the proposed approach is its capability
of being fused with any acceleration method based on algebraic
operation, for example non-Cartesian sensitivity encoding [23].
Any arbitrary sampling scheme (arbitrary k-space trajectory and
arbitrary view ordering) can be handled within the proposed al-
gebraic framework.

VI. CONCLUSION

We have developed a reconstruction method for accelerating
dynamic spiral MRI, which is based on the algebraic formula-
tion of aliasing in zy f space. Aliasing from m-fold undersam-
pling is formed such that only m temporal frequencies are cou-
pled to the same set of ill posed linear equations. Each ill posed
system can be solved independently assuming a finite support
region in the solution. Numerical simulation and in vivo experi-
ments using spiral twofold undersampling demonstrate that the
proposed method reduces motion blur and motion artifacts due
to increased temporal resolution.

The reduction of motion artifacts and motion blur achieved
using the proposed method is comparable to but slightly larger
than UNFOLD-like filtering, which is computationally more ef-
ficient. However, the proposed algebraic framework has the po-
tential to incorporate additional acceleration techniques based
on linear operations, such as non-Cartesian sensitivity encoding.
The proposed method also benefits from the flexibility to handle
arbitrary k-space trajectories, arbitrary acquisition orders, and
arbitrary data dimensionality.
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