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A graphical formalism is presented, showing that “UNaliasing
by Fourier-encoding the Overlaps Using the temporaL Dimen-
sion” (UNFOLD) is equivalent to sampling k-t-space in a
sheared grid pattern. Discrete regular sampling in k-t-space
leads to periodic replication of the support region in x-f-space.
Thus, the maximum acceleration achievable by UNFOLD is
equivalent to the maximum packing of support regions in x-f-
space. When the support region is separable along the x and f
axes, the reconstruction can be performed separately for each
k. UNFOLD can be combined with SiMultaneous Acquisition of
Spatial Harmonics (SMASH) to further accelerate acquisition.
However, a straightforward combination of the methods has
been shown to result in a size restriction, which limits the
portion of the field of view (FOV) with a larger temporal
bandwidth to only a quarter of the FOV. Two solutions are
presented to overcome this restriction. Magn Reson Med
47:202–207, 2002. © 2002 Wiley-Liss, Inc.
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Recently, Madore et al. (1–3) proposed the “UNaliasing by
Fourier-encoding the Overlaps using the temporaL Dimen-
sion” (UNFOLD) method for dynamic imaging. This
method speeds up data acquisition by sampling only a
fraction of k-t-space. Compared to parallel acquisition
methods (4,5) for fast imaging, it has the advantage of not
requiring special hardware, such as phased-array coils.
Since its introduction, UNFOLD has attracted the attention
of other researchers as well (6–10). However, from the
published descriptions of UNFOLD (1–3), it is difficult to
ascertain the capability of the method, such as the maxi-
mum achievable acceleration factor. The purpose of this
work is to present a theoretical analysis of UNFOLD, dem-
onstrating that the method admits a simpler interpretation,
which reveals its maximum capability and new ways of
applying it (e.g., combined with parallel imaging) in an
intuitive and geometric manner. Additionally, the new
interpretation highlights the relationship between
UNFOLD and other existing methods.

THEORY

UNFOLD Cardiac Imaging

UNFOLD has been applied to cardiac imaging to achieve a
twofold reduction in data acquisition (1–3). In that appli-
cation, it assumes that half of the FOV (e.g., the portion
over the heart) contains a much wider range of temporal

frequencies (i.e., a larger temporal bandwidth) than the
remaining FOV (e.g., adjacent portions in the chest). This
is illustrated in Fig. 1a, in which the shaded cross shape
indicates the support region containing most of the signal
energy, x denotes the spatial position along the phase-
encoding direction, and f denotes the temporal frequency.
The readout direction is omitted for simplification, and it
is frequency-encoded as in conventional Fourier imaging.
In this figure, the “more dynamic” region (i.e., the rectan-
gular region with a larger temporal bandwidth) is shown at
the center of the x-axis for illustration purposes only. In
general, it can be shifted to any position along x. Moreover,
it can be shifted to a different x for every image column
along the readout direction. In other words, its position
can be adapted on a column-by-column basis to follow the
anatomy more closely.

Data acquisition speed is doubled by acquiring either
the odd or even phase-encode lines at alternate time
frames. In the original UNFOLD publications (1–3), this
acquisition scheme is described in a frame-by-frame man-
ner as follows. At each time frame, k-space is under-
sampled by a factor of 2. This leads to a one-half reduction
of the FOV and a subsequent twofold aliasing of the image
contents. Since the sampling pattern is shifted at every
other time frame, the aliased portion of the image contents
alternates between positive and negative signs at succes-
sive time frames. As a result, the aliased portion can be
separated from the unaliased portion by high-pass filtering
along the temporal axis.

Instead of this frame-by-frame analysis (1–3), the present
work shows that the acquisition scheme can be analyzed
in a more straightforward and intuitive manner, directly in
k-t-space. Figure 1b shows the acquisition scheme in k-t-
space, which can be viewed as sampling k-t-space in a
sheared grid pattern (Fig. 1c). From the properties of the
Fourier transform, discrete regular sampling in k-t-space
leads to periodic replication in the reciprocal space (x-f-
space). The replicates are arranged in a sheared grid pat-
tern (Fig. 1d) according to the point spread function (Fig.
1e), which is the inverse Fourier transform of the sampling
grid in k-t-space. The replicates do not overlap because of
the shape of the support region. Thus, an unaliased copy of
the signal can be recovered.

This graphical formalism (Fig. 1a–e) suggests a straight-
forward alternative to the original reconstruction algo-
rithm described by Madore et al. (1–3), involving four
steps: 1) zero-fill the unacquired phase-encode lines; 2)
apply the inverse Fourier transform along the spatial and
temporal directions; 3) set all signals outside the support
region in x-f-space to zero (this is equivalent to the filtering
in UNFOLD); and 4) apply the Fourier transform along the
temporal direction to obtain images in x-t-space.

The main difference between this algorithm and the
original UNFOLD algorithm is that the aliasing is directly
resolved through steps 1 and 2 (i.e., zero-filled Fourier
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reconstruction along spatial and temporal directions).
More importantly, this algorithm elucidates the mecha-
nism by which UNFOLD resolves the aliasing from the
undersampled k-space. This is accomplished by judi-
ciously packing the replicates of the support region in
x-f-space in order to avoid overlap. Figure 1d shows that
for the present support region, the replicates are already
packed together as tightly as possible when the data ac-
quisition is doubled. Therefore, it can be seen geometri-
cally that the acceleration factor cannot increase beyond
2 without overlapping the replicates, which will result in
aliasing (11).

UNFOLD fMRI

In the case of fMRI (1–3), the support region has a different
shape, as shown in Fig. 2a. The support region consists of
horizontal strips centered around the zero frequency (DC)
and the harmonics of the stimulation paradigm. In Fig. 2b
and c, a fourfold acceleration is achieved by sampling

every fourth phase-encode line. The resulting periodic
replication of the support region and the point spread
function are shown in Fig. 2d and e, respectively. As
before, an unaliased copy of the signal can be recovered by
setting all signals outside the support region to zero.

The support region in Fig. 2a has the special property of
being separable along the x and f directions. Thus, recon-
struction can be performed separately for each k, thereby
simplifying the computation significantly. In this case,
UNFOLD is similar to the dynamic imaging by motion
estimation (DIME) method (12).

Madore et al. (1–3) chose to use spiral sampling of k-
space in their fMRI example, which leads to several im-
portant differences from the Cartesian sampling case. First,
k refers to the index of the spiral interleave, and not the
k-space position along the phase-encoding direction. Sec-
ondly, x refers to the reciprocal axis of k, but it no longer
corresponds to a spatial axis because the k-space trajectory

FIG. 1. UNFOLD for cardiac application with Cartesian sampling in
k-space. a: Shaded cross shape indicates the support region in
x-f-space (x: spatial position along phase-encoding direction, f:
temporal frequency). The signal intensity is assumed to be negligible
outside the support region. The heart shape identifies the portion of
x with a larger temporal bandwidth. b: The k-t-space sampling
pattern with gray ( ) and white dots (E) indicating sampled and
skipped positions, respectively (k: k-space position along phase-
encoding direction; t: time). The sampling pattern is equivalent to a
sheared grid pattern shown in c. A twofold acceleration is achieved
with this sampling pattern. d: Periodic replication in x-f-space. The
size scale is reduced compared to a. e: The point spread function
determining the replication pattern in d. Values in e indicate the
relative weights of the point spread function.

FIG. 2. UNFOLD for fMRI application with spiral sampling in k-
space. a: Shaded horizontal stripes indicate the support region in
x-f-space (x: reciprocal axis to k in b; f: temporal frequency). The
horizontal strips are centered around the zero frequency (DC) and
the first (1st) and second (2nd) harmonics of the stimulation para-
digm. The signal intensity is assumed to be negligible outside the
support region. The different shadings within the support region are
for distinguishing the horizontal strips only. b: The k-t-space sam-
pling pattern with gray ( ) and white dots (E) indicating sampled
and skipped positions, respectively (k: index of spiral interleave, t:
time). The sampling pattern is equivalent to the sheared grid pattern
shown in c. A fourfold acceleration is achieved with this sampling
pattern. d: Periodic replication in x-f-space. Only five replicates are
shown, to minimize clutter. The size scale is reduced compared to
a. e: The point spread function determining the replication pattern in
d. Values in e indicate the relative weights of the point spread
function.
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is now curved. As a consequence, the support region (Fig.
2a) is not localized along the x direction, but is spread to
the full extent. If Cartesian sampling is used instead, it
may be possible to confine the support region to a smaller
area in x-f-space, thereby allowing an even tighter packing,
as mentioned briefly by Madore et al. (3) In general, the
problem of packing support regions has been analyzed in a
lattice-theoretic approach by Willis and Bresler (13,14). In
that work, Willis and Bresler (13,14) further considered
the time-sequential-sampling constraint (i.e., only one
data point can be acquired at a time), thus abolishing the
implicit assumption that a set of phase-encode lines can be
acquired instantaneously at each time frame.

Combining UNFOLD With SMASH

Over the last few years, considerable interest in fast imag-
ing has focused on parallel imaging methods, particularly
on SiMultaneous Acquisition of Spatial Harmonics
(SMASH) (4), and SENSitivity Encoding (SENSE) (5).
Thus, a natural question is whether UNFOLD can be com-
bined with parallel imaging to further accelerate imaging
speed (9,15). A preliminary analysis was presented by
Kellman and McVeigh (9), who considered combining
UNFOLD with parallel imaging to provide a twofold ac-
celeration each, thus achieving a fourfold acceleration
overall. They concluded that the combined method would
work if the more dynamic portion of the FOV (i.e., the
portion with larger temporal bandwidth) was restricted to
one-quarter of the FOV only. In this section, a similar
analysis of combining UNFOLD with SMASH is presented
using the graphical formalism, which confirms the analy-
sis of Kellman and McVeigh (9). Furthermore, it reveals
two solutions to overcome the quarter-FOV restriction.
Very recently, a third solution for overcoming this restric-
tion was also presented by Madore (15). Since UNFOLD
and parallel imaging are linear methods, these solutions
are fundamentally related. They simply represent different
practical approaches for solving the same inverse problem.
The present work focuses on modifications of the k-t-space
sampling pattern, while Madore’s solution (15) relies on
the spatial localization ability of phased-array coils.

In the present analysis, the support region is assumed to
have a cross shape, with one-quarter of the FOV being
more dynamic (Fig. 3a). Data acquisition speed is quadru-
pled by acquiring only every fourth phase-encode line in
k-space, kl (with l ranging from one to the number of
phase-encode lines acquired at each time frame). The use
of SMASH allows reconstruction of the k-space data in the
adjacent phase-encode lines (kl � 1) (4). At each time
frame, the sampling pattern is shifted by two phase-encode
lines. The overall sampling pattern in k-t-space is shown
in Fig. 3b. The resulting periodic replication of the support
region and the point spread function are shown in Fig. 3c
and d, respectively. As Fig. 3c shows, the cross-shaped
support region is not overlapped by the replicates, as long
as the more dynamic portion of the FOV is restricted to
one-quarter of the FOV only. This observation confirms the
analysis of Kellman and McVeigh (9).

The graphical formalism reveals two solutions to over-
come this quarter-FOV restriction. The first, described in
this section, is a straightforward modification of SMASH.

The second involves a modification to UNFOLD, as de-
scribed in the next section and demonstrated in the Exam-
ples section. In the first solution, for every sampled phase-
encode line kl, SMASH is used to generate the phase-
encode line at both kl � 1 and kl – 1 (gray stars in Fig. 4b).
The sampling pattern is shifted successively by one phase-
encode line at each time frame (Fig. 4a). Using only the
generated phase-encode lines (gray stars in Fig. 4b), the
k-t-space sampling pattern is identical to that in Fig. 1b.
Thus, applying the reconstruction procedure in Fig. 1 will
recover all the remaining phase-encode lines (white and
gray dots in Fig. 4b). However, only the recovered data at
kl � 2 are needed (white dots), while the sampled phase-
encode lines kl (gray dots) should be determined directly
from the measured data to reduce error propagation.

In the second solution, the sampling pattern remains the
same as that in Fig. 3b. The crosshatched areas in x-f-space
(Fig. 3c) unoccupied by the replicates of the support region
can be exploited to overcome the quarter-FOV restriction,
as demonstrated in the following example. In Fig. 5a, the
support region is assumed to be the same as that in Fig. 1a,
with half of the FOV being more dynamic. To simplify
subsequent description, the support region is segmented
into five areas, labeled a–e (Fig. 5a). k-t-Space is sampled
in the same pattern as in Fig. 3b, so the point spread
function remains the same (Fig. 3d). In the zero-filled
Fourier reconstruction (Fig. 5b), the replicates of the sup-

FIG. 3. UNFOLD combined with twofold SMASH acceleration. a:
Shaded cross shape indicates the support region in x-f-space (x:
spatial position along phase-encoding direction; f: temporal fre-
quency). The signal intensity is assumed to be negligible outside the
support region. The heart shape identifies the portion of x with a
larger temporal bandwidth. b: The k-t-space sampling pattern with
gray ( ) and white dots (E) indicating sampled and skipped posi-
tions, respectively (k: k-space position along phase-encoding direc-
tion; t: time). The gray stars ( ) indicate additional k-space data
generated by SMASH. c: Periodic replication in x-f-space. Cross-
hatched areas are unoccupied. The size scale is reduced compared
to a. d: The point spread function determining the replication pattern
in c. Values in d indicate the relative weights of the point spread
function.
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port region overlap, so an unaliased copy of the signal
cannot be recovered by simple filtering.

Although the areas a–d (shown in gray in Fig. 5b) are
overlapped, there are corresponding areas in the replicates
that are not overlapped (labeled A�–D�). Thus, an overlap-
free copy of the signal can either be recovered from the
unoverlapped areas (A�–D�) or by solving the following
linear system to unscramble the overlap:

�
0 0 w* 0
1 0 0 w*
0 1 w 0
0 0 0 w
w* 0 0 0
0 w* 1 0
w 0 0 1
0 w 0 0

� �
a
b
c
d
� � �

I
II
III
IV
V
VI
VII
VIII

� [1]

where I–VIII refer to the segmented areas of the zero-filled
Fourier reconstruction (Fig. 5c), and w and w* are equal to
1⁄2 � 1⁄2i and 1⁄2 – 1⁄2i, respectively, as determined by the
relative weights in the point spread function (Fig. 3d).
Slight noise amplification is expected in this reconstruc-
tion due to the inversion of the linear system (Eq. [1]).
Nevertheless, the quarter-FOV restriction can be over-

come. A similar analysis can be extended to higher
SMASH acceleration factors, but the noise amplification
will also increase.

Although the more dynamic portion of the FOV can
occupy more than one-quarter of the FOV, it cannot oc-
cupy more than one-half of the FOV. This is because the
total amount of available data (gray dots and stars in Fig.

FIG. 5. UNFOLD combined with twofold SMASH acceleration. a:
Shaded cross shape indicates the support region in x-f-space (x:
spatial position along phase-encoding direction; f: temporal fre-
quency). The signal intensity is assumed to be negligible outside the
support region. The support region is divided into five areas labeled
a–e. b: Periodic replication in x-f-space resulting from the k-t-space
sampling pattern shown in Fig. 3b. Note that areas a–d are over-
lapped by replicates, which are divided into five areas labeled a�–e�
in the same manner as in a. The unoverlapped areas of the repli-
cates are labeled A�–D�. The x-f-space in b is segmented into
various areas (I–VIII) according to c for subsequent algebraic ma-
nipulations to unscramble the signal overlap.

FIG. 4. UNFOLD combined with twofold SMASH acceleration. a:
The k-t-space sampling pattern with gray ( ) and white dots (E)
indicating sampled and skipped positions, respectively (k: k-space
position along the phase-encoding direction; t: time). kl denotes the
sampled phase-encode lines at each time point. b: SMASH is used
to generate additional k-space data at kl � 1, indicated by the gray
stars ( ). The generated phase-encode lines ( ) alone form a sam-
pling pattern identical to that in Fig. 1b.
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3b) takes up one half of k-t-space only, while the other half
is skipped (white dots in Fig. 3b). Therefore, there are only
enough data to reconstruct half of x-f-space. For a cross-
shaped support region, this requirement is only satisfied if
the more dynamic portion of the FOV occupies no more
than half the FOV.

Examples

The following examples demonstrate the reconstruction
algorithms presented in the Theory section for the cardiac
application of UNFOLD. A photograph is used to represent
the data in x-f-space because the image features of the
photograph make it easier to recognize the aliasing pattern.
Figure 6a shows the true “data” in x-f-space, with a cross-
shaped support region. Two-, four-, and eightfold acceler-
ation factors were achieved by applying UNFOLD alone, or

in combination with two- or fourfold SMASH acceleration
(to generate adjacent phase-encode lines). The correspond-
ing zero-filled Fourier reconstructions are shown in Fig.
6b–d, respectively. For the reconstructed image from
UNFOLD alone, an unaliased copy of the signal can be
recovered by setting all signals outside the support region
to zero (Fig. 6e). For those from UNFOLD combined with
SMASH, additional algebraic manipulation is needed to
recover the unaliased signals (Fig. 6f and g), as outlined in
Eq. [1].

CONCLUSIONS

In summary, UNFOLD is an elegant method for speeding
up data acquisition without requiring special hardware. A
graphical formalism is presented, which illustrates the

FIG. 6. UNFOLD and UNFOLD-
SMASH. a: Original “data” in x-f-
space with a cross-shaped support
region (x: spatial position along
phase-encoding direction; f: tempo-
ral frequency). The signal intensity is
assumed to be negligible outside
the support region. Data are col-
lected in k-t-space according to the
sampling pattern of UNFOLD alone
(Fig. 1b), or combined with twofold
(Fig. 3b) or fourfold SMASH acceler-
ation. (k: k-space position along
phase-encoding direction; t: time).
b–d: Corresponding zero-filled Fou-
rier reconstructions. e: For UNFOLD
alone, signals outside the support
region are set to zero to yield the
final reconstruction. f and g: For UN-
FOLD combined with SMASH, addi-
tional algebraic manipulations are
needed to yield the final reconstruc-
tions.
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principles of UNFOLD by analyzing its sampling pattern
in k-t-space. This formalism shows that the maximum
acceleration achievable by UNFOLD is equivalent to the
maximum packing of support regions in x-f-space. When
the support region is separable along the x and f axes, the
reconstruction can be performed separately for each k.

The graphical formalism also provides new insights into
the combined method of UNFOLD and SMASH. Two so-
lutions are presented which allow the more dynamic por-
tion of the FOV to occupy up to half the FOV.
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