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Dynamic images of natural objects exhibit significant correla-
tions in k-space and time. Thus, it is feasible to acquire only a
reduced amount of data and recover the missing portion after-
wards. This leads to an improved temporal resolution, or an
improved spatial resolution for a given amount of acquisition.
Based on this approach, two methods were developed to sig-
nificantly improve the performance of dynamic imaging, named
k-t BLAST (Broad-use Linear Acquisition Speed-up Technique)
and k-t SENSE (SENSitivity Encoding) for use with a single or
multiple receiver coils, respectively. Signal correlations were
learned from a small set of training data and the missing data
were recovered using all available information in a consistent
and integral manner. The general theory of k-t BLAST and k-t
SENSE is applicable to arbitrary k-space trajectories, time-
varying coil sensitivities, and under- and overdetermined recon-
struction problems. Examples from ungated cardiac imaging
demonstrate a 4-fold acceleration (voxel size 2.42 � 2.52 mm2,
38.4 fps) with either one or six receiver coils. k-t BLAST and k-t
SENSE are applicable to many areas, especially those exhibit-
ing quasiperiodic motion, such as imaging of the heart, the
lungs, the abdomen, and the brain under periodic stimulation.
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Dynamic MRI captures an object in motion by acquiring a
series of images at a high frame rate. Conceptually, the
straightforward approach would be to acquire the full data
for reconstructing each time frame separately. This re-
quires the acquisition of each time frame to be short rela-
tive to the object motion in order to effectively obtain an
instantaneous snapshot. However, this approach is limited
by physical (e.g., gradient strength and slew rate) and
physiological (e.g., nerve stimulation) constraints on the
speed of data acquisition. Over the years a number of
strategies have been proposed to further increase the ac-
quisition rate by reducing the amount of acquired data by
a given factor, referred to as the acceleration factor here-
after. These strategies are able to reduce data acquisition
without compromising image quality significantly because
typical image series exhibit a high degree of spatiotempo-
ral correlations, either by nature or by design. Therefore,
there is a certain amount of redundancy within the data. In

general, such strategies for reducing data acquisition can
be divided into three approaches, based on exploiting
correlations in k-space, in time, or in both k-space and
time.

The first approach, based on exploiting correlations in
k-space, encompasses a wide variety of methods, includ-
ing partial Fourier methods (1,2), reduced-field-of-view
methods (3), parallel imaging (4,5), and prior-information-
driven methods (1,6). These methods speed up acquisition
by collecting only a fraction of k-space at each time frame.
The missing data are then recovered based on the mea-
sured k-space points from the same time frame. Although
the methods differ significantly in their technique of data
recovery, they are all based on the principle that each
point in k-space contains some information about other
points in k-space. This correlation can be used to recover
the missing information. In all of these methods, the image
at each time frame is reconstructed independently from
the images at other time frames.

The second approach, based on exploiting temporal cor-
relations, encompasses methods such as keyhole (7,8) and
various view-sharing strategies (9–13). In these methods
the full k-space is successively updated, but the rate of
update may vary for different portions of k-space. The
measured data at a given position in k-space form a series
of samples in time. The missing data at all other time
points can then be interpolated or extrapolated from these
samples, using a variety of schemes, including zero-order
hold, nearest-neighbor interpolation, and linear interpola-
tion, among others. More sophisticated extensions of these
methods rely on interpolators with a frequency response
that is tailored to the temporal-frequency contents of the
object, e.g., the method of Xiang and Henkelman (14),
Dynamic Imaging by Model Estimation (DIME) (15), or the
fMRI example of UNaliasing by Fourier-encoding the
Overlaps using the temporaL Dimension (UNFOLD)
(16,17). Regardless of the choice of the interpolator, each
point in k-space is reconstructed separately from all other
points.

The third approach, based on exploiting correlations in
both k-space and time (16,18–22), is a combination of the
two above approaches. Thus, a missing data point is esti-
mated based on other available points, typically within its
vicinity in both k-space and time. The advantage of this
approach is that it exploits more of the relevant correla-
tions, thus improving the estimation of missing data. This
improvement may translate to either reduced estimation
error or higher achievable reduction in data acquisition.
Examples of this approach are the cardiac example of
UNFOLD (16) and a related method developed indepen-
dently by Willis and Bresler (18–21). Both of these meth-
ods (16,18–21) share the interesting property that the re-
construction only involves a filtering process, which does
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not amplify noise. However, to achieve this desirable
property the data have to be acquired according to a sam-
pling pattern that solves a related Euclidean packing prob-
lem (17–21). This requirement places a stringent restric-
tion on the achievable acceleration factor. In practice, a
2-fold acceleration is typically achievable (16,17), while a
4-fold acceleration is possible only under restrictive con-
ditions (see fig. 14 in Ref. 18).

In the present work, two new methods that exploit cor-
relations in both k-space and time are proposed. They
allow the use of higher acceleration factors by relaxing the
sampling restriction of the previous methods. Higher ac-
celeration is achieved at the expense of some noise ampli-
fication during reconstruction. Nevertheless, this trade-off
between the achievable acceleration and image quality is
gentle and nonabrupt. Also, it is adjusted to match each
imaging situation automatically, since the methods learn
the actual spatiotemporal distribution of the object signals,
rather than make a priori assumptions about it (17). Im-
proved accuracy is achieved if multiple receiver coils are
available to provide additional data for reconstruction.
The proposed methods are named k-t BLAST (Broad-use
Linear Acquisition Speed-up Technique (6)) and k-t
SENSE (SENSitivity Encoding (5)) for use with a single or
multiple receiver coils, respectively.

THEORY

Dynamic MRI acquires the raw data in k-space at different
time points, t. Using the formalism of Xiang and Henkel-
man (23), the raw data can be equivalently viewed as being
acquired in a higher dimensional k-t space. The arrange-
ment of these discrete samples in k-t space is referred to as
the k-t sampling pattern.

Reconstruction of a dynamic image series involves de-
termining the object signals in k-t space from the discretely
sampled data. According to the properties of Fourier trans-
formation, discrete sampling in k-t space leads to a convo-
lution of the object signals in the reciprocal x-f space with
a point spread function. “x” and “f” are the conjugate axes
of “k” and “t” after inverse Fourier transform. Here, they
refer to spatial axis (along the phase-encoding direction)
and temporal frequency, respectively.

To simplify the subsequent description, we focus on 2D
dynamic imaging only, although the proposed methods are
applicable to any number of spatial dimensions. We divide
the remainder of this section into three parts. The first part
considers the situation where the k-t sampling pattern
conforms to a lattice structure (i.e., a grid that may be
sheared or rotated) (20,21), such as by using interleaved
echo-planar imaging (EPI) (24). If multiple receiver coils
are used, it is assumed in this part that the coil sensitivity
information is time-invariant. These two conditions lead
to tremendous simplifications in the reconstruction, al-
lowing for efficient computation. The second part de-
scribes the general situation where the k-t sampling pat-
tern may not conform to a lattice structure and the coil
sensitivity may be time-varying. Finally, the third part
describes how to obtain the signal estimates needed for the
reconstruction described in the first two parts.

Lattice Sampling in k-t Space

Figure 1a shows a k-t sampling pattern with a lattice struc-
ture, which can be viewed as a sheared grid, or in this
special case, a rotated grid. At each time point, k-space is
sampled in a Cartesian manner. The frequency-encoding
direction is omitted for simplicity. It is oriented perpen-
dicular to the page and it is reconstructed by inverse
Fourier transform. “k” refers to the index of the phase-
encode line. At each time point t, several regularly spaced
phase-encode lines are acquired. Different sets of phase-
encode lines are acquired at successive time points. This
sampling pattern is referred to as “sparse,” since one or
more phase-encode lines are skipped between the sampled
ones. This sampling pattern is, in reality, slightly skewed,
since the phase-encode lines of each time point are not
acquired instantaneously. Nevertheless, this skew is rela-
tively small, so it can be neglected in practice.

As a result of the lattice structure of the k-t sampling
pattern, the point spread function in x-f space also has a
lattice structure (Fig. 1b). Since the sampling in k-t space is
finite, the point spread function is strictly speaking a su-
perposition of shifted sinc functions. In high-resolution
imaging, the sinc functions have narrow widths, so the
point spread function is adequately approximated as a set
of delta functions arranged in a lattice, which simplifies
the subsequent treatment significantly. Convolution with
such a point spread function leads to periodic replication
of the object signals (17). Figure 1c illustrates the effects on
the object signals in x-f space. The convolution maps the
signals from several locations (e.g., from x-f space voxels

FIG. 1. a: k-t space sampling pattern with a 4-fold acceleration. “k”
and “t” refer to the phase-encode index and time, respectively. The
sampling pattern is equivalent to sampling on a sheared grid. b:
Resulting point spread function in x-f space. “x” and “f” refer to the
spatial position along the phase-encoding direction and temporal
frequency, respectively. c: Convolution of object signals in x-f space
with point spread function, resulting in aliasing which maps �1, �2,
�3, and �4 onto a single aliased voxel �alias. To avoid clutter, not all
the signal replicates are shown.

1032 Tsao et al.



labeled �1, �2, �3, and �4) onto the same location �alias,
resulting in aliasing. It should be noted that the aliasing
occurs among voxels at different spatial positions x as well
as different temporal frequencies f. Mathematically, this
aliasing is described as:

� 1 1 1 1 � �
�1

�2

�3

�4

� � 1���alias. [1]

Eq. [1] is underdetermined. Thus, there are an infinite
number of feasible solutions that satisfy Eq. [1]. The task of
reconstruction is to find an appropriate solution out of the
solution set, which can be handled in a number of ways.
For example, in a typical time series of images most of the
signal energy is contained in the lower temporal frequen-
cies. Therefore, one solution is to assign all of the signal in
�alias to the voxel at the lowest temporal frequency (i.e.,
�2 � �alias in this example since �2 is closest to the vertical
axis at f � 0), while all other voxels are set to zero (i.e., �1 �
�3 � �4 � 0). This strategy is sound if the Nyquist sampling
criterion is fulfilled. Otherwise, it can lead to incorrect
signal assignment, as in the present example.

A second solution is to make use of prior information,
which can be obtained either from a priori assumptions
(16,17) or measured explicitly, as described later. If it is
known that only one of the voxels contains a significant
amount of signal (i.e., �3 in this example), then all of the
signal in �alias can be attributed to it, while the remaining
voxels can be set to zero (i.e., �1 � �2 � �4 � 0). In other
words, the aliasing is resolved through an n-way decision
that selects one appropriate voxel out of n voxels involved
in the aliasing (16,18–21). The advantage of this strategy is
that it does not lead to any error amplification, since it
only involves assigning signals to the appropriate voxels.
However, it is unable to resolve the aliasing if more than
one voxel is known to contain signal. One way to circum-
vent this limitation is to alter the k-t sampling pattern in
order to further separate the peaks of the point spread
function and to reduce the amount of aliasing. However,
this may lead to lower achievable acceleration as well. If
the aliasing is confined to voxels with low signals, one
may also circumvent the limitation by setting all the vox-
els involved to zero (18,19) (i.e., �1 � �2 � �3 � �4 � 0).
This leads to some filtering of the object signals, but avoids
any aliasing.

The purpose of this work is to present a more flexible
solution to this aliasing problem by making use of addi-
tional information that can be obtained easily in practice.
Suppose that an estimate of the signal magnitudes (m1, m2,
m3, and m4) is available for the voxels involved (�1, �2, �3,
and �4), one can obtain a feasible solution to Eq. [1] that
minimizes the following weighted norm:

��
i

��i/mi�2. [2]

This solution is desirable since it selects the feasible solu-
tion that matches both the data as well as the expected
relative signal magnitudes. If the magnitude estimates are

unavailable (i.e., m1 � m2 � m3 � m4 � arbitrary value),
this solution reduces exactly to the minimum-norm solu-
tion. The weighted-minimum-norm solution to Eq. [1] is
(25,26):

��M�1M���alias [3]

where M is a diagonal matrix with m1 to m4 along the
diagonal. The superscript � indicates a Moore-Penrose
pseudoinverse. Eq. [3] can be written as:

��M21H�1M21H��1�alias �
��m1�2�m2�2�m3�2�m4�2�H

�m1�2 � �m2�2 � �m3�2 � �m4�2 �alias.

[4]

It can be seen from Eq. [4] that the weighted-minimum-
norm solution simply distributes the signal in �alias to the
voxels involved according to their expected signal powers.
In essence, M specifies where signal changes are likely to
occur in x-f space, in a similar fashion to how the dynamic
reference image in the original BLAST method (6) specifies
where signal changes occur in image space. If only a single
voxel is expected to have signal (i.e., mi � 0 for all others),
the solution becomes identical to the n-way decision de-
scribed before. In general, M2 in Eq. [4] corresponds to the
signal covariance matrix (i.e., M2 � 	�,�H
), so it is not
restricted to being a diagonal matrix only. In this work, we
treat M2 simply as a diagonal matrix, since the diagonal
elements (i.e., the signal variance) can be estimated rather
easily, as described below.

Equation [4] can be expanded in two ways. First, using
the approach of Wiener filtering, Eq. [4] can be regularized
to reduce the sensitivity to and to absorb some measure-
ment noise. Second, from a statistical point of view, the
signals in � can be considered to fluctuate around a base-
line, which can be incorporated into the reconstruction to
aid the determination of �. A regularized version of Eq. [4],
incorporating the baseline estimate, is given by (see Ref.
27 for a similar formulation or eq. 16 in Ref. 28 from a
Bayesian perspective):

� � � � M21H�1M21H � ���1��alias � 1�� [5]

where � is the noise variance. � is a complex-valued base-
line estimate of �. In this expression, M2 is redefined to be
the covariance matrix of the signal deviation from baseline
�.

By solving Eq. [5] for every set of aliased voxels, one
obtains the reconstructed object signals in x-f space. Fi-
nally, applying a Fourier transform along f yields the ob-
ject signals in x-t space, which corresponds to a series of
images over time t. This is the reconstruction procedure of
k-t BLAST.

If multiple receiver coils are available, the data from
them can be incorporated into the above equations in a
consistent manner. Here, it is assumed that the sensitivity
of the coils is time-invariant. The case of time-varying
sensitivity is described below.

The use of multiple coils can be viewed as providing
additional observations (i.e., additional matrix rows) to Eq.
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[1]. Specifically, by incorporating the sensitivity informa-
tion, Eq. [1] generalizes to:

S� � �alias � �
�alias;1

�alias;2···
�alias;nC

� [6]

where S is the sensitivity matrix, containing the complex
sensitivity values of the nC receiver coils, as described in
Ref. 5; �alias;� is the aliased signal from the �-th coil. The
regularized solution to Eq. [6], incorporating the baseline
signals, the expected deviation from baseline, and the
noise characteristics, is given by:

� � � � M2SH�SM2SH � ���1��alias � S��

� � � �SH��1S � M�2��1SH��1��alias � S�� [7]

where � is the noise covariance matrix of the receiver
coils (29). The two expressions in Eq. [7] are mathemati-
cally equivalent formulations (27). The first expression is
more efficient to evaluate if S has more columns than rows
(i.e., when the acceleration factor is higher than the num-
ber of receiver coils), and vice versa. This is the recon-
struction formula of k-t SENSE.

It can be seen that the reconstruction formula is identi-
cal for k-t BLAST (Eq. [5]) and k-t SENSE (Eq. [7]), except
for the interchange of 1 and S in the respective formulae.
The only difference is that the equation is always under-
determined for k-t BLAST, whereas it can be overdeter-
mined for k-t SENSE if the number of receiver coils is more
than the acceleration factor. The transition between the
under- and overdetermination regimes is handled in a
smooth and consistent manner by the equations above.

To summarize, the raw data are acquired according to
the specified k-t sampling pattern. The frequency-encod-
ing direction is reconstructed by inverse Fourier trans-
form. Then the data at each frequency-encoded position
undergo separate reconstruction as follows. The data are
arranged in a k-t array, with the dimensions being “the
image size along the phase-encode direction” by “the num-
ber of time points.” The unacquired portions of this array
are filled with zeroes. For k-t SENSE, the data from each
coil is arranged in a separate k-t array. Inverse Fourier
transform is applied along k and t to yield the object
signals in x-f space, which may suffer from aliasing. Equa-
tions [5] or [7] are solved for each set of aliased voxels for
k-t BLAST or k-t SENSE, respectively. The reconstructed
x-f array undergoes Fourier transform along f to yield an
x-t array. Collecting the x-t arrays from all frequency-
encoded positions yields the reconstructed images at all
time points.

General Sampling in k-t Space

The reconstruction is considerably more demanding if the
k-t sampling pattern does not conform to a lattice struc-
ture. To keep the formulation as general as possible, it is
assumed that the data are acquired with multiple coils and
that the coil sensitivities vary with time, such as due to

subject motion. The k-space data acquired from the �-th
coil at time t is given by:

d��k� , t� � � ��x� , t� � s��x� , t� � e�ik� �x�dx� [8]

where �( x� , t) and s�( x� , t) are the object signal and the
sensitivity of the �-th coil at position x� and time t. If there
is only a single coil, the factor s�( x� , t) can be removed, as
it can be incorporated into �( x� , t). In matrix form, the
problem is expressed as:

E�x,f � �
dk,t;1

dk,t;2···
dk,t;nC

� [9]

where �x,f represents the discrete object signals in x-f
space, expressed as a vector. dk,t;� is the raw data in k-t
space from the �-th coil, expressed as a vector. E is an
encoding matrix representing a discretization of the linear
mapping between �x,f and dk,t;�. In general, Eq. [9] also
holds for the continuous domain, with the product E �x,f

representing a matrix where each entry represents the
integral of the object signals multiplied with an encoding
function.

The encoding matrix E includes the following opera-
tions: Fourier transform along f (FTf3t), multiplication
with the time-varying sensitivity of the �-th coil (Sx,t;�),
Fourier transform along x (FTx3k), and retaining only the
sampled points in k-t space (
k,t):

E � �

k,t FTx3k Sx,t;1 FTf3t


k,t FTx3k Sx,t;2 FTf3t···

k,t FTx3k Sx,t;nC FTf3t

� [10]

The regularized weighted-minimum-norm solution to Eq.
[9] is obtained in an analogous fashion as before (Eq. [7]):

�x,f � �x,f � Mx,f
2 EH�EMx,f

2 EH � �k,t�
��dk,t � E�x,f�

� �x,f � �EH�k,t
�1E � Mx,f

�2��EH�k,t
�1�dk,t � E�x,f� [11]

where �x,f is an estimate of the baseline signals in x-f space.
Mx,f

2 is the signal covariance matrix. 
k,t is the noise co-
variance matrix of the coils in k-t space. 
k,t has a nested
structure, and the entries corresponding to the covariance
between two time points are zero, since the noise at dif-
ferent time points should be uncorrelated.

In general, it is computationally demanding to solve Eq.
[11]. Nevertheless, considerable simplification can be
achieved if the coil sensitivities are time-invariant or the
k-t sampling pattern conforms to a lattice structure. Oth-
erwise, direct analytic solution of the inverse problem may
be infeasible even for moderate image sizes and number of
time points and iterative approaches are required (29).

Obtaining Signal Estimates

The reconstruction formulae outlined above require an
estimate of the baseline signal �x,f and an estimate of the
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squared deviation from baseline Mx,f
2 . The corresponding �

and M2 from Eqs. [5] and [7] are simply truncated versions
of �x,f and Mx,f

2 in Eq. [11], incorporating only the entries
pertaining to each set of aliased x-f voxels. To simplify
notation, the more general �x,f and Mx,f

2 , corresponding to
the full data, will be used to refer to both hereafter.

We obtained �x,f directly from the sparsely sampled data
and introduced a separate training period for obtaining
Mx,f

2 . Specifically, each dynamic MRI experiment is di-
vided into a short training stage and the usual acquisition
stage (Fig. 2). The scanner parameters are identical be-
tween the two stages, except for the k-space trajectory. In
the training stage, k-space is densely sampled, but only in
the low spatial frequencies. This yields a series of low-
resolution images at a high frame rate. In general, the
intensities of the training images should be scaled simi-
larly to those in the final reconstructed images, since the
former will be used to estimate Mx,f

2 of the latter. Special
attention is needed to correct for normalizations of any
applied filters, or of the inverse Fourier transform (e.g.,
when the training and acquisition data have different
number of time points).

The raw training data in k-space undergo the following
steps to yield Mx,f

2 (Fig. 3). First (step 3.1 in Fig. 3), filtering
is optionally applied to the raw data in k-space to reduce
ringing artifacts from truncation. The choice of filtering is
subject to the usual considerations regarding the tradeoff
between blurring and artifact reduction. Second (step 3.2),
inverse Fourier transform is applied to k-space. For k-t
SENSE, the data from the multiple coils are combined
using SENSE (5). From this point onwards, each frequen-
cy-encoded position is processed separately. Then (step
3.3) inverse Fourier transform is applied along t, and we
denote the result as �train(x,f). The temporally invariant
(i.e., direct-current or DC) term (i.e., �train(x,0)) is set to

zero (step 3.4). Filtering is optionally applied along f to
reduce noise with high temporal frequencies (step 3.5).
Since the training images have low resolution, they may
potentially underrepresent certain fine image features. A
simple pragmatic solution is to multiply �train(x,f) with a
scaling factor (e.g., 2�, step 3.6), which provides a safety
margin by attenuating the regularization. A higher value
for this safety margin allows more image features to be
reconstructed at the expense of some noise increase. Since
its effect on image quality is gradual, much like the pro-
gressive effects introduced by common filtering tech-
niques, its precise value is not critical and can be adjusted
by the user based on the signal-to-noise ratio. Taking the
squared magnitude of the result (i.e., ��train(x,f)�2) yields the
diagonal elements of Mx,f

2 (step 3.7). This step may require
interpolation if ��train(x,f)�2 and Mx,f

2 have different sizes.
Linear interpolation can be used for computational effi-
ciency, since Mx,f

2 is only an estimate of the true covariance
matrix, so it is unnecessary to achieve very high accuracy
in the interpolation.

To obtain the baseline estimate �x,f, the sparsely sam-
pled k-t space data from the acquisition stage undergo the
following steps (Fig. 4). The sparsely sampled data are
averaged along t to yield a temporal average (step 4.1 in
Fig. 4). The temporally averaged k-space is first subtracted
from the corresponding data at each time frame (step 4.2).
The temporally averaged k-space and the subtracted data
at each time frame were separately inverse Fourier trans-
formed to yield a temporally averaged image and a series
of aliased images, respectively (step 4.3). Each frequency-
encoded position (e.g., see vertical dashed line) is pro-
cessed separately hereafter as follows. The image column
from the temporally averaged image is used as the DC term
(at f � 0) of the baseline estimate �x,f (step 4.4). The value
of �x,f is set to zero at all other f. The image columns from

FIG. 2. k-t sampling pattern used in simulation,
consisting of 40 and 160 frames for the training
and acquisition stages, respectively. In the
training stage, only 18 central phase-encode
lines were used at each time frame, resulting in
a series of low-resolution training images. In the
acquisition stage, only every fourth phase-en-
code line was used at each time frame, result-
ing in a series of aliased images. The phase-
encoding direction was horizontal in the images
shown at the bottom.
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the aliased images are gathered and inverse Fourier trans-
formed along t (step 4.5) to yield an x-f array, which
represents the difference data for reconstruction, corre-
sponding to the term in the rightmost parentheses in Eqs.
[5] and [7] and the equivalent term in k-t space from Eq.
[11].

Two features can be noticed about the difference data.
First, the central vertical strip corresponding to the DC
term is zero, since the DC component has been subtracted
already. Second, the signals are replicated (i.e., aliased)
4-fold along the diagonal from the upper right to the lower
left, according to the alias pattern shown in Fig. 1. The
aliasing in the difference data is subsequently resolved
(see bottom panel of Fig. 4) by reconstructing with Eqs. [5],
[7], or [11] for lattice sampling with one coil, lattice sam-
pling with multiple coils, or arbitrary sampling with an
arbitrary number of coils, respectively.

MATERIALS AND METHODS

Simulation

k-t BLAST and k-t SENSE were validated by simulation
using a previously reconstructed ungated cardiac image
series (30), which was obtained with SENSE at a frame rate
of 31.8 fps and a matrix size of 128 � 116 (frequency �
phase). The image series consisted of 200 complex-valued
frames. From these, 40 frames were used in low resolution
(18 phase-encode lines) for the training stage, while only

25% of the data in the remaining 160 frames were used for
the acquisition stage, simulating a 4-fold acceleration. A
sequential interleaved k-t sampling pattern was used, as
shown in Fig. 2. The simulation assumed a uniform body
coil for k-t BLAST, and a six-element phased array placed
around the body for k-t SENSE. The complex-valued sen-
sitivities of the phased array coils were calculated using
Biot-Savart’s law. The sensitivity maps used in generating
the simulation data were also used in the reconstruction.
Normally distributed complex-valued noise (SD � 10% of
mean intensity) was added to the data.

The k-t BLAST and k-t SENSE reconstructions were
compared with the original images. The reconstruction
errors are reported as the relative artifact power, which
was calculated as the mean squared absolute difference
between the reconstructed and the true images at each
time point, normalized by the mean squared absolute in-
tensity of the true image. For comparison, the results are
also shown for sliding-window reconstruction using the
same data as for k-t BLAST. The sliding window was
symmetric in time with an effective length of four time
points. Thus, the image at time t was reconstructed using
the data from t–1, t, and t�1 and the average of the data
from t–2 and t�2.

Experiments

Ungated cardiac imaging experiments were conducted on
a healthy volunteer in a Philips 1.5 T Intera whole body

FIG. 3. Main processing steps for the training
stage of k-t BLAST. The processing steps were
similar for k-t SENSE, with an additional step to
combine the data from all coils using SENSE.
Only 18 central phase-encode lines were ac-
quired at each time frame and the unacquired
k-space data were zero-filled. The data were
filtered along the phase-encoding direction to
reduce truncation artifacts (3.1) and inverse
Fourier transformed (3.2) to yield a series of
low-resolution training images. Each frequen-
cy-encoding position (e.g., see vertical dashed
line) was processed separately hereafter as fol-
lows. The image columns from all time frames
were gathered into an x-t array and inverse
Fourier transformed along t (3.3) to yield an x-f
array. The central vertical strip at f � 0, corre-
sponding to the DC term, was set to zero (3.4).
Filtering was applied to attenuate the high tem-
poral frequencies (3.5). The intensity magnitude
in the final x-f array was multiplied by a safety
margin (3.6). Taking the squared magnitude
(3.7) yielded the diagonal elements of Mx,f

2 , rep-
resenting the estimated squared deviation from
baseline.
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scanner (Philips Medical Systems, Best, the Netherlands).
Informed consent was obtained before imaging. For the k-t
BLAST experiment, a single 20 cm-diameter surface coil
was taped to the subject’s chest. For k-t SENSE experi-
ment, a six-element phased array was mounted to a rigid
frame around the subject’s body, as described by Weiger et
al. (30). The imaging slice was placed transversely at the
level of the heart.

Data were acquired in a free-running mode using a seg-
mented gradient-echo EPI sequence (24), with an echo
train length of 9, an FOV of 310 � 201.5 mm2, a slice
thickness of 10 mm, a matrix size of 128 � 80 (frequency �
phase), a repetition time (TR) of 13 ms, an echo time of
6.2 ms, and echo time shifting (24).

For the training stage, phase-encode lines –9 to 8 were
acquired by two EPI segments in an interleaved manner.
For the acquisition stage, phase-encode lines –30 to
41 were acquired by eight EPI segments in an interleaved
manner, with a segment order of 0, 4, 1, 5, 2, 6, 3, 7. The
data from every two EPI segments were combined into a

single time point, resulting in a frame duration of 2 TR �
26 ms. This allowed an increased number of phase-encode
lines for each training image without an excessively long
echo train, and it retained a lattice sampling pattern for the
undersampled data. Generally, lumping adjacent data to
the same time point has little impact on image quality, as
long as the combined duration is short relative to the
object motion. In all, 400 frames were acquired for the
training stage and for the acquisition stage.

To construct the coil sensitivity maps for k-t SENSE
reconstruction, a temporally averaged image was obtained
separately for each coil in the training stage and in the
acquisition stage. These temporally averaged images were
divided by the mean absolute image of all coils and
smoothed to reduce noise. Therefore, a separate set of
sensitivity maps was obtained for the training and acqui-
sition stages. If the coil sensitivity is time-varying, this
procedure can be modified to that of Kellman et al. (22), in
which time-varying sensitivity maps are obtained from
sliding-window (i.e., moving-average) reconstructions,

FIG. 4. Main processing steps for the acquisition stage of k-t BLAST. The processing steps were similar for k-t SENSE and the data from
all coils were combined during the final reconstruction step (using k-t SENSE instead of k-t BLAST). Only every fourth phase-encode line
was acquired at each time frame and the unacquired k-space data were zero-filled. The black band across the top of each k-space reflects
the slightly asymmetric k-space coverage. These data were averaged to yield a temporally averaged k-space (4.1), which was first
subtracted from the corresponding data at each time frame (4.2). The temporally averaged k-space and the subtracted data at each time
frame were separately inverse Fourier transformed to yield a temporally averaged image and a series of aliased images, respectively (4.3).
Each frequency-encoding position (e.g., see vertical dashed line) was processed separately hereafter as follows. The image column from
the temporally averaged image was used as the DC term (at f � 0) of the baseline estimate (4.4). The rest of the baseline estimate was set
to zero. The image columns from the aliased images were gathered and inverse Fourier transformed along t (4.5) to yield an x-f array, which
can be seen to suffer from aliasing. This array was reconstructed with k-t BLAST, incorporating information from the baseline estimate and
the estimated deviation from baseline. The aliasing was effectively resolved after reconstruction.
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rather than the globally time-averaged reconstructions
used in the present implementation. For the training stage,
the data from all coils at each time frame were combined
during reconstruction with SENSE.

General Reconstruction Issues

The noise variance (for k-t BLAST) or the noise covariance
matrix (for k-t SENSE) was estimated using background
voxels. For the training stage, filtering was applied to
k-space along the phase-encoding direction and to the
temporal frequency direction. The k-space filter was a
Hamming filter to reduce truncation artifacts and the tem-
poral frequency filter was a low-pass filter, with a central
pass band of 50% bandwidth and half-Hanning-shaped
transition bands of 20% bandwidth on either side. A safety
margin of 2 was used in the determination of Mx,f

2 (see step
3.6 in Fig. 3).

RESULTS

Simulation

Figure 5a shows representative images over four consecu-
tive time frames. The true images are shown on the top row
for comparison. The reconstructed images from k-t
BLAST, k-t SENSE, and sliding window and the corre-
sponding error images are shown below. For k-t BLAST,
the reconstructed images captured the overall dynamics
well, although a slight loss of image details is discernible
for fast-moving signals. For k-t SENSE, the reconstructed

images captured the overall dynamics even better, and
virtually all image details were represented faithfully. The
corresponding error images contained mostly random
noise patterns for both methods. The sliding-window re-
constructions show more temporal blurring. For example,
the moving front of fresh blood in the left ventricle is
visualized less crisply. The corresponding error images
contained noise as well as an increased amount of residual
aliasing for fast-moving signals, indicating that it was less
apt at reconstructing the higher temporal frequencies. The
error images show that the reconstructed images from k-t
BLAST and k-t SENSE contain less noise than those from
sliding window, due to regularization of the reconstruc-
tion formulae, which absorbs some of the noise.

Figure 5b shows the reconstruction error as the relative
artifact power at different time frames. The error was high-
est for sliding window reconstruction. Between k-t BLAST
and k-t SENSE, the error was lower for the latter, as ex-
pected, since k-t SENSE had data from additional receiver
coils. In the present study the reconstruction was under-
determined for k-t BLAST, while it was overdetermined
for k-t SENSE. The error for k-t SENSE was nonzero be-
cause of the added noise in the simulation and the specific
treatment of the DC term, as described in the Discussion.
The error was higher for all methods at the beginning and
end of the image series. For k-t BLAST and k-t SENSE, this
was due to the temporal discontinuity between the initial
and last frames of the image series, while the Fourier
transform implicitly assumed periodic boundaries. For

FIG. 5. a: Simulation results,
comparing the true images and
reconstructed images from k-t
BLAST, k-t SENSE, and sliding
window over four representa-
tive and consecutive frames. b:
Relative artifact power for all
methods over time. The
H-shaped marker indicates the
time frames shown in a. c: Ab-
solute mean intensity over time
for an ROI placed in the left ven-
tricle of the reconstructed im-
ages. The corresponding curve
from the true images is shown
in dotted line for comparison
and the magnitude of the com-
plex difference between each
reconstructed curve and the
true curve is shown at the bot-
tom of each panel. Both k-t
BLAST and k-t SENSE cap-
tured the overall dynamics well,
but sudden intensity variations
led to increased errors. In gen-
eral, the errors were lower for
k-t SENSE. Sliding window
captured a temporally low-pass
version of the intensity time
curve, so it was unable to de-
pict the sudden time-varying
features.
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sliding window, this was due to the sliding window ex-
tending beyond the acquired time frames. In practice, the
increased error at the beginning and the end of the acqui-
sition stage does not pose a problem, since it is easily
overcome by acquiring several additional image frames in
the beginning and the end of the acquisition stage and
discarding the extra frames after reconstruction. The re-
construction error was also seen to exhibit temporal peri-
odicity, which was related to the periodic changes in the
image contents from cardiac motion.

Figure 5c shows the temporal variation of the mean
intensity magnitude for a 3 � 3 region of interest (ROI)
placed in the left ventricle. The corresponding curve from
the true images is overlaid as a dotted line for comparison
and the magnitude of the complex difference between each
reconstructed curve and the true curve is shown at the
bottom. The results confirm those from visual inspection.
Compared to the intensity time curve of the true images,
k-t BLAST and k-t SENSE were able to reconstruct the
overall temporal dynamics well. However, sudden
changes in intensity, represented by sharp corners in the
intensity time curve, were somewhat temporally
smoothed, and the smoothing was less for k-t SENSE. The
temporal smoothing was noticeably worse for sliding-win-
dow reconstruction and the corresponding error was
higher. This smoothing was expected for sliding-window
reconstruction, which is effectively a low-pass temporal
filter, resulting in attenuation of higher temporal frequen-
cies.

Experiments

Figure 6 shows a representative frame from the k-t BLAST
(Fig. 6a) and k-t SENSE (Fig. 6b) reconstructions (bottom),
compared with zero-filled Fourier reconstructions (top)
followed by root-mean-square coil combination for the
multiple-coil data. It should be noted that the data for k-t
BLAST and k-t SENSE were acquired in separate experi-
ments, so the images cannot be directly compared in a
voxel-by-voxel manner. The zero-filled Fourier reconstruc-

tions exhibited aliasing artifacts due to the 4-fold under-
sampling along the phase-encoding direction (vertical di-
rection). This aliasing was eliminated by k-t BLAST and
k-t SENSE reconstruction. The reconstructed image from
k-t BLAST exhibits an intensity dropoff towards the pos-
terior due to the use of a single surface coil placed on the
chest. In comparison, the reconstructed image from k-t
SENSE had a more uniform intensity distribution, due to
the use of a phased array placed around the body.

Figure 7 shows additional reconstructed images from k-t
BLAST (Fig. 7a) and k-t SENSE (Fig. 7b) in consecutive
frames. Both image series revealed the rapid dynamics of
the blood inside the myocardium and in the aorta. The
complex flow patterns, the myocardial motion, and the
free-breathing motion of the lungs can be more readily
appreciated when viewed in cine.

DISCUSSION

We have presented the theory and experimental verifica-
tion of k-t BLAST and k-t SENSE. Both methods are based
on the premise that the raw data in dynamic imaging
exhibit correlations in k-space and in time. Thus, it is
sufficient to acquire only a reduced amount of data and
recover the missing portion afterwards, thereby leading to
increased spatiotemporal resolution. We showed that the
correlations in k-space and time could be determined from
a set of training images, which allowed the signal distri-
bution in x-f space to be learned. By exploiting this prior
information, it was feasible to push the spatial and tem-
poral resolutions of ungated imaging beyond current capa-
bilities (30) during the acquisition stage. In this work, we
presented experimental results for ungated cardiac imag-
ing, demonstrating a 4-fold acceleration with a voxel size
of 2.42 � 2.52 mm2 at 38.4 fps. The concept of k-t BLAST
and k-t SENSE can be combined with imaging sequences
other than EPI, and they can be used with partial Fourier
acquisition to allow asymmetric k-space coverage in order
to achieve short TE and TR and a higher temporal resolu-
tion.

FIG. 6. Ungated cardiac imaging experiment with 4-fold acceleration, comparing representative (a) k-t BLAST and (b) k-t SENSE
reconstructions (bottom) with their respective aliased images (top). The aliased images were reconstructed from the undersampled data
using zero-filled Fourier reconstruction, followed by root-mean-square coil combination for the multiple-coil data. The reconstructed image
from k-t BLAST exhibits an intensity drop off towards the posterior due to the use of a single surface coil placed on the chest. The aliasing
artifacts from undersampling were eliminated in the k-t BLAST and k-t SENSE reconstructions.
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k-t BLAST and k-t SENSE are quite general in the sense
that they can handle a wide range of object motions. The
only requirement is that the motion learned from the train-
ing stage is representative of the motion in the acquisition
stage, so the training images need to have sufficient reso-
lution and duration to observe changes in image contents
(e.g., �5–10 sec in duration and �10–20 phase-encode
lines for real-time cardiac imaging). Nevertheless, the ac-
tual form of the motion can be arbitrary, although motions
that are more localized in x-f space (i.e., more localized in
space (26) and more periodic) favor the reconstruction,
since they allow denser signal packing in x-f space.

Treatment of DC Term

In the present methods, the DC term (i.e., data for f � 0)
was reconstructed differently from all other temporal fre-
quencies. This special treatment of the DC term makes use
of the knowledge that in typical image series the DC term
has by far the strongest signal intensities, while the signal
intensities of the aliased frequencies are likely to be insig-
nificant in comparison. Since the reconstruction formula
contains quantities that may be inexact (e.g., baseline sig-
nal, signal covariance, and coil sensitivities), one may
commit more errors by trying to resolve this aliasing than
by overlooking it. Hence, in the present methods the DC
term was obtained simply as the temporal average of all of
the data from the acquisition phase. The result of this
procedure was that any temporal frequencies that were
aliased to the DC term were not resolved. Therefore, in the
reconstructed images the signal intensities of these aliased
frequencies were added to the DC term, while their own
reconstructed intensities were set to zero. In practice, this
has negligible impact on the reconstructed images, since it
only affects the narrow bands of frequencies that alias

exactly onto the DC term. If the aliased frequencies are
known to have strong signals, one may also alter the se-
quence timing slightly such that those frequencies no long
alias exactly onto the DC term.

k-t Sampling Issues

Reconstruction accuracy can be improved further by opti-
mizing the k-t sampling pattern. For example, the data
from the training stage can be used as an estimate of the
signal distribution. Then, the effects of sampling can be
assessed by decimating the data and trying to recover them
afterwards. The optimal sampling pattern is the one that
leads to minimal signal degradation. However, this opti-
mization is impractical in general due to high computa-
tional demand and no analytic solutions are known (31).
Nevertheless, the problem can be made tractable if certain
simplifying assumptions are made about the signal distri-
bution. In those cases, the optimal sampling pattern can be
obtained efficiently from either a precalculated library (32)
or on-the-fly calculation (18,19).

In the present study, the k-t sampling pattern was pre-
determined, so it was not optimized for the actual distri-
bution of object signals in x-f space. Additionally, the
signal distribution was not assumed to adopt any particu-
lar shape (17). Nevertheless, k-t BLAST and k-t SENSE
were able to produce good reconstruction results even
without sampling optimization. This robustness stemmed
from the fact that the present methods did not need to
avoid all signal aliasing with the choice of k-t sampling
pattern only (17). The weighted-minimum-norm approach
also contributed to resolving the signal aliasing by using
knowledge of the signal distribution in x-f space and of the
coil sensitivities. The aliasing was completely resolved
when the reconstruction problem was overdetermined and

FIG. 7. Ungated cardiac imaging experi-
ment with 4-fold acceleration, showing (a)
k-t BLAST and (b) k-t SENSE reconstruc-
tions at consecutive time frames with a tem-
poral resolution of 26 ms. The k-t BLAST
images exhibit an intensity drop-off due to
the use of a single surface coil placed on the
chest. The images from k-t BLAST and k-t
SENSE were acquired in separate experi-
ments, so they cannot be compared directly
in a frame-by-frame manner.
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well-conditioned, and it was partially resolved otherwise.
As a result, the reconstruction quality was not entirely
dependent on the sampling pattern and sampling optimi-
zation was therefore less critical. This flexibility of using
arbitrary sampling patterns simplifies the practical use of
the present methods.

Comparison of k-t BLAST and k-t SENSE

k-t BLAST and k-t SENSE are closely related, except that
k-t SENSE additionally accounts for the coil sensitivities.
This difference underlies the respective advantages of
these methods. When the coil sensitivities are not taken
into account (i.e., k-t BLAST) and the k-t sampling pattern
conforms to a lattice structure, the computation becomes
exceedingly straightforward, involving no matrix inver-
sion. Also, the modulation of the coil sensitivity can be
incorporated into the object function �( x� ,t) itself, thus
eliminating the need for sensitivity assessment. These ad-
vantages allow for a simple experimental set-up and a
short reconstruction time, which is especially important
for high-dimensional (e.g., time resolved 3D imaging)
and/or real-time applications. On the other hand, by ac-
counting for the coil sensitivities (i.e., k-t SENSE), signal
overlaps in x-f space are easier to resolve with the com-
plementary information from multiple coils. This poten-
tially allows tighter signal packing in x-f space, thereby
further improving acquisition efficiency. With the multi-
coil data the reconstruction becomes more exact due to the
incorporation of additional observations. As expected, the
accuracy is improved when the acceleration factor is rel-
atively low compared to the number of receiver coils.
However, one has the freedom to increase the acceleration
factor beyond the number of receiver coils, since the pro-
posed methods make a smooth transition from the overde-
termined to the underdetermined case. The degradation in
image quality through this transition is gentle, as seen by
comparing the presented results from k-t BLAST (i.e., un-
derdetermined case) and k-t SENSE (i.e., overdetermined
case).

CONCLUSIONS

The performance of dynamic imaging can be significantly
enhanced by exploiting signal correlations in k-space and
in time. These correlations are represented as the expected
signal distribution in x-f space, which can be obtained, for
example, by acquiring a small set of training data. k-t
BLAST and k-t SENSE were developed to exploit these
correlations as prior information to recover unacquired
k-space data in a flexible and adaptive manner. These
methods provide an integral approach to recovering the
missing data based on all of the acquired data and avail-
able information. The general concept is applicable to
arbitrary k-space trajectory and time-varying sensitivity
information.

The present approach is fundamentally different from
the conventional approach for dynamic imaging, which
repeats the same scan over time to acquire a series of
separate images. This “scan-and-repeat” approach treats
every voxel at every time point as a separate unknown.
Such a treatment is somewhat unnecessary unless every

voxel in an image is completely random and its variation
over time is entirely unpredictable. We have shown that
the high degree of spatiotemporal correlations in natural
image series can be exploited to improve the efficiency of
the imaging process, which in turn allows significant im-
provements in the achievable spatial and temporal resolu-
tions.

The present methods should not be confused with data-
sharing methods, which apply a fixed interpolator to esti-
mate any unacquired data in order to increase the apparent
frame rate. This interpolation process does not resolve any
potential signal aliasing and may lead to degradation of the
true signals at higher temporal frequencies. In contrast, the
present methods learn and adapt to the expected signal
distribution. Thus, the estimation process is tuned to the
available image contents, resulting in improved quality of
the reconstructed images and achieving a high frame rate
without additional temporal interpolation. k-t BLAST and
k-t SENSE are applicable to a wide range of areas, partic-
ularly those with object motion exhibiting quasi-periodic
behaviors. These include most anatomies of interest, such
as the heart, the lungs, the abdomen, and the brain under
periodic stimulation, among others.
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