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1. INTRODUCTION 
There are many alternatives to 2DFT acquisition methods. These include spiral scans, 

radial scans, Lissajou trajectory scan and so on (Figure 1) [1]. Many of these have 

specific advantages over spin-warp, such as speed and SNR efficiency. The main 

disadvantage with these methods is the difficulty of reconstructing the resulting data sets. 

There are many choices for non-Cartesian data sets image reconstruction. The first 

approach is to collect the non-Cartesian data in a way that a previously known 

reconstruction method can be applied. For example Filtered Back Projection (FBP) can 

be applied for radial scans data set. While this solves the reconstruction problem, it 

usually requires compromises in data acquisition. Second, the non-Cartesian data can be 

demodulated point-by-point with the conjugate phase reconstruction. But this method is 

very slow. The most computationally efficient method of reconstruction is to resample 

the data onto a Cartesian grid, which enable the subsequent use of inverse fast Fourier 

transform (IFFT), and post compensation, if necessary. 
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 (a) (b) (c) 
Figure 1. Some alternative acquisition methods. (a) Constant angular rate spiral, which can use projection 

reconstruction method. (b) Lissajou trajectory (c) Spiral trajectory used in this project 

 

In MRI, the most widely used resampling algorithm is gridding. Usually, the gridding 

methods consist of four steps: 1) pre-compensation for varying sampling density; 2) 

convolution with a Kaiser-Bessel window onto a Cartesian grid; 3) IFFT; 4) post-

compensation by dividing the image by the transform of the window. In this paper, the 

Block Uniform Re-Sampling (BURS) and regularization Block Uniform Re-Sampling 

(rBURS) are used to interpolate the non-Cartesian scan data. BURS and rBURS are both 
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optimal/suboptimal and computationally efficient. Comparing to the conventional 

gridding, neither pre- nor post-compensation are required, and the results were shown to 

be of excellent accuracy.  

2. THEORY 
In this section, the theories for BURS algorithm will be introduced first. Then the 

theoretical analysis of noise for BURS will be addressed. Finally, one noise reduction 

solution for BURS, namely regularization BURS (rBURS), will be provided. 

2.1 BLOCK UNIFORM RESAMPLING (BURS) ALGORITHM 

The BURS algorithm can be summarized as follows: 

1. Initialize an N by M matrix A  with zeros (N and M represent the number of the 

Cartesian grid points and the number of the non-uniformly sampled data points, 

respectively) 

#

2. For each Cartesian grid point k ),,1(, Nii L= : 

2.a. Select the iM non-uniformly sampled points in a kδ neighborhood of . ik

2.b. Select the iN Cartesian grid points in a k∆ neighborhood of . ik

2.c. Form a ii N×M matrix A of the interpolation coefficients based on the sinc 

function. 

2.d. Compute #A , the truncated singular value decomposition (SVD) pseudo-

inverse matrix of A . 

2.e. Transfer the row of #A corresponding to the point to the i-th row of . ik #A

3. The uniform samples are calculated as x , where b is a column vector 

containing the non-uniform data measurements. 

bA #=

4. Perform an inverse Fourier transform (IFT) on the resulting uniform samples. 

Figure 2 illustrates how to select the iM non-uniformly sampled points in a 

kδ neighborhood of k and i iN Cartesian grid points in a k∆ neighborhood of k . The i kδ  

and  neighborhoods of the are illustrated as circle regions in the Figure 2. But in the 

implementation, other shapes of neighborhood maybe used. For example, square 

k∆ ik

 3



neighborhood can be used in Cartesian coordinate for computational efficiency and easier 

implementation. Square and circular shapes of neighborhood are tested in our simulations.  

In BURS algorithm, the selections of values for k∆  and kδ  will dramatically affect 

the final results (which will be shown in the simulations). When iN > iM , the pseudo-

inverse can be computed as: 

 TT AAAA 1# )( −=  (1) 

When iN < iM , the pseudo-inverse can be computed as: 

 1# )( −= TT AAAA  (2) 

The simulation results give some examples of how the reconstruction results varies 

with different combination of iN and iM . 
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Figure 2. The illustration for BURS algorithm. The kδ  and k∆  neighborhoods of the k in this 

plot are defined as a circle regions. The big dots represents 

i

iM non-uniformly sampled points in a 

kδ neighborhood of k ; the big cross signs represent i iN Cartesian grid points in a 

neighborhood of .  k∆ ik

 4



2.2 EFFECT OF NOISE 

Several papers have reported that although the BURS algorithm is very accurate, it is 

also sensitive to the noise. As a consequence, even in the presence of a low level of 

measurement noise, the resulting image is often highly contaminated with noise.  

In the gridding process, each uniform output point at location k (i=1,…,N) is linearly 

interpolated using 

i

iM  known data of non-uniform samples { i
i
m Mk ,,1, L=m } which are 

within kδ neighborhood of k : i

 ∑
=

=
iM

m

i
mimi kfakf

1

)()(  (3) 

where is non-uniform (non-Cartesian) input data; is the interpolated uniform 

output(Cartesian) at k ;  are the interpolation coefficients, in BURS algorithm, these 

coefficients are derived by pseudo-inverse. Assuming the noise is additive and consists of 

zero mean white Gaussian noise with variance , using above equation, it can be 

derived that the noise of the interpolated data  is additive Gaussian noise with zero 

mean and the variance : 

)( i
mkf )( ikf

i ima

2
iσ

2σ

)i(kf

 ∑
=

=
iM

m
imi a

1

222 σσ  (4) 

Because the interpolation coefficients vary as k changes, the noise level  is space 

dependent in k-space domain, even if we assume the noise is i.i.d in original non-

Cartesian k-space data. In Rosenfeld’s paper [4], the k-space “noise amplification” is 

defined as: 

i
2
iσ

 ∑
=

==Ω
iM

m
imii a

1

2/σσ  (5) 

Rosenfeld [4] tested this noise effect of BURS by using a four-interleaf spiral trajectory. 

The was calculated for each uniform point. We also did the test on our spiral trajectory 

and get similar results, which are show in Figure 3.  

iΩ
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Figure 3. Noise amplification iΩ using BURS for spiral trajectories. (a) the result from [4], 

x-axis represents the distance from the origin of the k-plane. (b) The iΩ  values for the row 

 based on our own spiral trajectory. The x-axis represents the  coordinate. 0=yk xk

 

Both results show that most points have a noise amplification of about unity, however 

a substantial number of points have extreme high noise amplification number. This is the 

reason that cause the reposted noise contaminated result for BURS algorithm. Although 

only small part of k-space point have very high noise level, after the Fourier transform, 

the noise will distributed across the whole image. 

Equation (5) shows that the high noise amplification coefficients are due to the high 

value of interpolation coefficients, which is the row of  #A corresponding to the point . 

We know that the solution of an inverse problem is unstable, which means that small 

changes in the input data may lead to large perturbations in the results (ill-posed problem). 

So it becomes clear that, the ill-conditioned matrixes 

ik

ATA  cause the large perturbations 

in the coefficients and finally result in large noise level in reconstructed image.  

 

2.3 REGULARIZED BLOCK UNIFORM RESAMPLING ALGORITHM 
The basic ideal of the rBURS is to stabilize the matrix inversion solution by 

modifying the problem in such a way that the inversion solution becomes less sensitive to 

small perturbations in the data. At the same time, the solution to the modified problem 
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must remain close to the original solution.  Thus the original solution is replaced 

by the approximate solution such that 

bAx #=

bAx #
ρ=

  (6) bAbA ##
0

lim =
→

ρρ

where ρ is a positive smoothing parameter. We now focus on one type of regularization 

technique, referred to as “spectral windowing”. By using equation (1), 

 ∑ −− ==
k

k
T
kk ubvbAAAbA TT )()( 11# α  (7) 

where are eigenvectors of AA ; are eigenvectors of A ; kv T
ku AT L≥≥ 21, αααk are 

singular values. is computed as: bA#
ρ

 ∑ −=
k

k
T
kkkW ubvbA )(1# αρρ  (8) 

where W is called the “window coefficients”. There are many different definitions for 

these coefficients including “Truncated singular system expansion” and “Tikhonov filter” 

which are defined separately as: 

kρ

  “Truncated singular system expansion” :   (9) 




 <

=
otherwise0

)/1(1 ρ
ρ

k
W k

 “Tikhonov filter” : 
ρα

α
ρ

+
= 2

2

k

k
kW  (10) 

WhenW is defined as (10), it can be proved that can be computed as: kρ bAx #
ρ=

 bAIAAubvbAx TT

k
k

T
kkkW 11# )()( −− +=== ∑ ραρρ  (11) 

In our implementation, equation (11) is employed for regularization. 

3. IMPLEMENTATION 
In the real system, given the non-Cartesian k-space trajectory, kδ and , by using the 

BURS algorithm described in section 2.1, the matrix can be calculated and saved pre 

reconstruction. Whenever the data sampling is done and reconstruction is needed, the 

matrix  can be reloaded and used directly. By this way, the computational time is 

shortened dramatically. But this method needs to process the huge size matrix , which 

makes the data handling not so easy. In addition, in order to test the different parameter 

k∆

#A

#A

#A
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combinations in this paper, the parameters kδ and k∆ change from time to time, which 

makes change each time. So, in our simulation, instead of storing the huge matrix 

and interpolating all points one time, the Cartesian point interpolation is done point by 

point through the whole image.  

#A

#A

; j,1L =

k∆

#A

TA(

() x−

|,0x

3.1 IMPLEMENTATION OF BURS/rBURS ALGORITHM 

1. Initialize an N N matrix with zeros (the size of the image is N×N) × M

2. For each Cartesian grid point ),,1,(, NNiij L=M : 

2.a. Select the ijM non-uniformly sampled points in a kδ neighborhood of . 

Form a 

ijM

1×ijM  column vector d  usingij ijM known non-uniformly sampled data. 

2.b. Select the ijN Cartesian grid points in a neighborhood of .  ijM

2.c. Form a ijij N×M matrix A of the interpolation coefficients based on the sinc 

function. 

2.d-BURS. For BURS algorithm, =pseudo-inverse matrix of A  . 

2.d-rBURS. For rBURS algorithm,  TAIAA 1# )−⋅+= ρ . 

2.e. Let #a = row of corresponding to the point , #A ijM ijijij daM ⋅= #    

3. Perform an inverse Fourier transform (IFT) on the . M

3.2 SHAPE OF THE NEIGHBORHOOD  

In the real implementation, the neighborhood of the point (  within radius ), 00 yx r can 

be defined at least in two different ways: 

1. Circular Neighborhood with radius : Cr

 }||),,(|||),{(}{ 00 Cryyxyxodneighhorho ≤=  (12) 

2. Square Neighborhood with radius : Sr

 }|)|max(||),{(}{ 0 Sryyxyxodneighhorho ≤−−=  (13) 

Notice that, when the radiuses have the same value, the square neighborhood has 

larger coverage area than that of circular neighborhood. To make both definitions have 

the same coverage area,  and  should satisfy:  Cr Sr

 
4

)2( 22 ππ CSSC rrrr =⇒=⋅  (14) 
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Circular neighborhood has the advantage that the closest (in the sense of norm2) 

points from the center of the neighborhood are selected. Square neighborhood will select 

some points (in the corner of the square) not so close to the center, but square 

neighborhood is easier to implement and computational more effective. In the simulation, 

two neighborhood definitions are tested and compared.  

To make the comparison equitable, same “effective” radius r  is used for different 

shapes, then r  and  are computed using equation (14). Suppose both neighborhood 

have same “effective” radius 

C Sr

r , then: 

For circular neighborhood: rrC = ;       For square neighborhood: 
4
πrrS =  (15)  

4. SIMULATIONS AND RESULTS 

The data set used here is a simulated phantom using a spiral acquisition with 6 

interleaves of 1536 samples. Center part of the trajectory is illustrated in Figure 2. Four 

problems are studied in our simulation: 

1) How the reconstruction result changes with k∆  and kδ . Figure 4 shows the results 

for =1 while k∆ kδ varies from 0.3~1.  Figure 5 shows the results for ∆ =2 while k

kδ varies from 0.5~1.4.  Beyond these kδ ranges, the results become unacceptable. 

2) How the shape of neighborhood (circular vs. square) affect the results. In the 

simulation, the circular neighborhood is always used for kδ (non-Cartesian), circular 

AND square neighborhoods are tested for k∆ (Cartesian points). Set the effective 

radius =1, 2, 3 respectively, k∆ kδ  values are chosen such that the best reconstruction 

achieved for each case. Circular and square neighborhoods are tested with same 

effective radius and k∆ kδ settings. Figure 6 shows the results. 

3) BURS vs. rBURS algorithm. One image with high-SNR and one with low-SNR are 

tested using BURS and rBURS algorithm respectively. The low-SNR image is 

produced by adding Gaussian noise to K-space spiral sampled data.  

4) Compare the result of BURS/rBURS with “true” image. The image reconstructed by 

gridding w/ Pre-Density Compensation & Deapodization is used as the “original” 
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image.  Then we compare the best results produced by BURS and rBURS with the 

“original” image. Figure 8 shows the images and the difference images. Figure 9. 

shows the profile of the images.   

   
 (a) kδ =0.3, =1; k∆ iM =3, iN =5@(64, 64) (b) kδ =0.4, k∆ =1; iM =4, iN =5@(64, 64) 

   
 (c) kδ =0.5, =1; k∆ iM =5, iN =5@(64, 64) (d) kδ =0.7, k∆ =1; iM =12, iN =5@(64, 64) 

   
 (e) kδ =0.9, =1; k∆ iM =35, iN =5@(64, 64) (f) kδ =1, k∆ =1; iM =37, iN =5@(64, 64) 
 
Figure 4. Comparing different  and k∆ kδ  combinations for BURS algorithm. Circular neighborhoods are 
used for   and k∆ kδ . Fix ∆ =1, k kδ  value is changed from 0.3 to 1.  iM and iN  values @ =(64, ),( yx kk
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64) are provided for each case. It shows that when bad underdetermined case ( iM >> iN ) occurs, some 
artifacts will appear in the reconstructed image.  
 

   
 (a) kδ =0.5, =2; k∆ iM =5, iN =13@(64, 64) (b) kδ =0.7, k∆ =2; iM =12, iN =13@(64, 64) 

   
 (c) kδ =0.9, =2; k∆ iM =35, iN =13@(64, 64) (d) kδ =1, k∆ =2; iM =37, iN =13@(64, 64) 

   
 (e) kδ =1.2, =2; k∆ iM =43, iN =13@(64, 64) (f) kδ =1.4, k∆ =2; iM =51, iN =13@(64, 64) 
 
Figure 5. . Comparing different ∆  and k kδ  selections for BURS algorithm. Circular neighborhoods are 
used for  ∆  and k kδ . Fix ∆ =2, k kδ  value is changed from 0.4 to 1.4.  iM and iN  values @ 

=(64, 64) are provided for each case. It shows that when bad underdetermined case (),( yx kk iM >> iN ) 
occurs, some artifacts will appear in the reconstructed image.  
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 (a) kδ =0.6, =1, Circular k∆ kδ =0.6, k∆ =1, Square 

   
 kδ =0.9, =2, Circular k∆ kδ =0.9, k∆ =2, Square 

   
 kδ =1.3, =3, Circular k∆ kδ =1.3, k∆ =3, Square 
 
Figure 6. Comparing “circular” neighborhood with “square” neighborhood for BURS algorithm. Circular 
neighborhoods are always used for kδ ; circular and square neighborhoods are tested for ∆ .  Fix the 
“effective” neighborhood radius ∆ =1, 2 and 3, 

k

k kδ  values are selected such that best reconstruction result 
is achieved for each case. The results show that different shapes of neighborhood have some but limited 
effect (circular neighbor is little bit better) on reconstructed image.  
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 (1a) Original w/ High SNR (2a) Original w/ Low SNR 

   
 (1b) BURS result w/ High SNR (2b) BURS result w/ Low SNR 

   
 (1c) rBURS result w/ High SNR (2c) rBURS result w/ Low SNR 
 
Figure 7. Compare BURS with rBURS algorithm. Left column is for High SNR case, right column is for 
Low SNR case. The “original” image is produced by gridding with Pre-Density Compensation & 
Deapodization.  Low SNR image is produced by adding Gaussian noise in K-space.  For all BURS/rBURS 
reconstructions, set kδ =1.5, =3. Regularization smoothing parameter ρ=0.01. k∆
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(a) Original Image 

   
 (b) BURS  (c) Difference Image  
  between BURS and “original” image 

   
 (d) rBURS  (e) Difference Image for rBURS 
  between rBURS and “original” image 
 
Figure 8. Compare the best BURS and best rBURS results with “original” image. The “original” image is 
produced by gridding with Pre-Density Compensation & Deapodization. The results shown here for BURS 
and rBURS are the best results we get during the simulation. The difference image shown on the right is the 
difference between BURS/rBURS with the original image.  
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(a) Profile for Original Image @ row x=78 
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(b) Profile for BURS Image @ row x=78 
 

 
(c) Profile for rBURS Image @ row x=78 

 
Figure 9. The profiles for different images shown in Figure 8. 

 
 
5. CONCLUSIONS  
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(1)  Effect of neighborhood radius kδ and k∆ . 

Figure 4 and 5 show that  (i) If kδ is too small ( kδ <0.3), then no matter how large the 

is, we can not get very good result. (ii) Keep k∆ k∆  fixed, when kδ  increases from a very 

small number (around 0.3), the result will become better first, then become worse. For the 

tested cases, when 0.~5.1/kk 2/k∆∆≈δ , the BURS produces best result. (iii) When 

kδ fixed, increasing the value of k∆ , the result becomes better.  

If we check the BURS algorithm more carefully, we will find that although kδ , k∆  

will affect the result, they are not the root of the reason. In fact, it is iM and iN values 

who really affect the result! In order to produce good results, iM should NOT exceed iN  

too much. If iM >> iN occurs for some points (often occurs around the origin in k-plane, 

because our spiral data is more dense around the origin which makes iM  achieve it’s 

maximum value around the origin), we can still get the result, however, there will be 

some low frequency artifacts in the images (see Figure 4e, 4f, 5e, 5f ). Now we can 

explain the (i)~(iii) listed above based on iM and iN  values. (i) iN  and iM should not be 

too small. (ii) iM  can not exceed iN  too much all the time, otherwise the result will have 

some low-frequency artifact. (iii) the bigger the iN  and iM , the better the result. 

 

(2) Effect of the shape of the neighborhood. 

Our results show that BURS with circular neighborhood will produce a little bit better 

results than that of square neighborhood, but the differences are small (Figure 6). 

 

(3) BURS vs. rBURS. 

BURS is sensitive to the high level of noise as well as underdetermined case (Figure 

7-1b, 2b). On the contrary, the rBURS is robust to the high level of noise as well as 

underdetermined case (Figure 7-1c, 2c). rBURS is also robust in the case of combination 

of high noise and underdetermined matrix. Even in this worst case, the result of rBURS 

(Figure 7-2c) is still very close to the “original” image (Figure 7-2a), which is produced 

using gridding with Pre-Density Compensation & Deapodization. 
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(4) Fidelity of BURS/rBURS 

 By checking the reconstructed images, difference images (Figure 8) and the profiles 

of the reconstructed images (Figure 9), we can conclude that (I) The best results produced 

by BURS and rBURS are very close to the “original” image. (II) There are some small 

errors occur in high frequency components, i.e. some errors around the edges.  
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APPENDIX MATLAB CODES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% EE591 MRI                        % 
% Term Project    BURS & rBURS    % 
% Zheng Li, Dec. 2004              % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear; close all; n=128; 
 
load rt_spiral.mat;     %{d: data; k: sampling kernel; w: weight} 
%load noise_spiral;      %{nd: additive Gausian noise} load same random noise data each time  
%d=nd+d; 
 
erc=3;      % (effective) radius of delta-k neighborhood in Cartesian coordinate 
rk=1.3;     % radius of delta-k neighborhood in Non-Cartesian coordinate 
shape='c'; % shape of the neighorhood, 'c'-->circular; 's'-->square 
 
% for sqare neighorhood, rc=effective r * sqrt(pi/4) 
if isequal(shape, 's') 
    rc=erc*sqrt(pi/4); 
    disp(strcat('Square Neighborhood, Radius=', num2str(rc))); 
end; 
% for circular neighorhood, rc=effective r 
if isequal(shape, 'c') 
    rc=erc; 
    disp(strcat('Circular Neighborhood, Radius=', num2str(rc))); 
end; 
 
if (0) %BURS 
    [MB, OMB]= gridBURS(d,k,n, rk, rc, shape);  % call BURS gridding function; 
    imgB=ift(MB); 
    figure; imagesc(abs(imgB)); 
    axis square;    colormap('gray');   colormenu;  axis off; 
else % rBURS 
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    [MrB, OMrB]=gridrBURS(d, k, n, rk, rc, 0.01, shape); % call rBURS gridding function 
    imgrB=ift(MrB); 
    figure; imagesc(abs(imgrB)); 
    axis square;    colormap('gray');   colormenu;  axis off; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%% 
%  function    BURS   % 
%%%%%%%%%%%%%%%%%%%%%%% 
function [M, OM] = gridBURS(d,k,n,rk,rc,shape) 
 
% function [M, OM] = gridBURS(d,k,n,rk,rc) 
% Block Uniform ReSampling method for gridding 
%       d -- k-space data 
%       k -- k-trajectory, scaled -0.5 to 0.5 
%       n -- image size 
%       rk-- non-cartesian kernel radius 
%       rc-- cartesian kernel radius 
%       shape-- choose circle (=='c') neighborhood  
%              or square neighborhood (=='s') for Cartesian points 
% 
%       M -- K-space interpolated data 
%       OM-- noise amplification (defined in Rosenfeld 2002 Magn Reson Med) 
%        
% Zheng Li, Nov. 2004 
 
% convert to single column 
d=d(:); 
k=k(:); 
 
% convert k-space samples to matrix indices 
nxk=(n+1)/2 + (n-1)*real(k); 
nyk=(n+1)/2 + (n-1)*imag(k); 
% initialize the output matrix 
M=zeros(n,n); 
OM=zeros(n,n); 
 
% change the cartesian coordinate to one column, so that we can find  
% the cartesian point withing "rc" easily. 
[mxc, myc]=meshgrid(1:n, 1:n); 
mxc=mxc(:); 
myc=myc(:); 
 
% main loop, compute the BURS gridding value for each point 
for xc=ceil(1+rc):floor(n-rc) 
    for yc=ceil(1+rc):floor(n-rc) 
        if shape=='s' 
            [mxdc, mydc]=meshgrid(ceil(xc-rc):floor(xc+rc), ceil(yc-rc):floor(yc+rc)); 
            % get the Cartesian points in "square" neighborhood of (xc,yc) 
            xyc=mxdc(:)+i*mydc(:); 
            indc=ones(length(xyc),1);     % just to make to !=[] 
        elseif shape=='c' 
            % find the index of the Cartesian points in the "rc" neighborhood of (xc+yc*i) 
            indc=find( ((mxc-xc).^2 + (myc-yc).^2) <=rc^2+eps ); 
            if ~(isempty(indc)) 
                % get the Cartesian points in "circular" neighborhood of (xc,yc) 
                xyc=mxc(indc)+i*(myc(indc)); 
            end; 
        end; 
        % find the index of the Non-Cartesian points in the "kc" neighborhood of (xc+yc*i) 
        indk=find( ((nxk-xc).^2 + (nyk-yc).^2) <=rk^2+eps ); 
        % print the N (# of Cartesian points), and M (# of Non-Cartesian points) 
        % @ several positions along ky=0 axis.  
        if (yc==64) & (mod(xc, 16)==0) 
            disp(strcat('N=', num2str(length(indc)), ... 
                        ',  M=', num2str(length(indk)), ... 
                        '  @(', num2str(xc), ',', num2str(yc), ')')); 
        end;                 
        if ~(isempty(indk)) & ~(isempty(indc)) 
            % get the Non-Cartesian points in "circular" neighborhood of (xc,yc) 
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            xyk=nxk(indk)+i*(nyk(indk)); 
            A=interp2sinc(xyc, xyk); 
            pA=pinv(A);     % pinv can handle over/under determined cases automatically 
            ind0=find( (xyc==xc+yc*i) ); 
            M(xc, yc)=pA(ind0, :)*d(indk); 
            OM(xc, yc)=sqrt( sum(pA(ind0, :).^2) ); 
        end; 
    end; 
end; 
%end 
 
function [M, OM] = gridrBURS(d,k,n,rk,rc,r,shape) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% function        rBURS   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 function [M, OM] = gridrBURS(d,k,n,rk,rc,r,shape) 
% regularized Block Uniform ReSampling method for gridding 
%       d -- k-space data 
%       k -- k-trajectory, scaled -0.5 to 0.5 
%       n -- image size 
%       rk-- non-cartesian kernel radius 
%       rc-- cartesian kernel radius 
%       shape-- choose circle (=='c') neighborhood  
%              or square neighborhood (=='s') for Cartesian points 
%       r -- regularization smoothing parameter 
% 
%       M -- K-space interpolated data 
%       OM-- noise amplification (defined in Rosenfeld 2002 Magn Reson Med) 
%        
% Zheng Li, Nov. 2004 
 
% convert to single column 
d=d(:); 
k=k(:); 
 
% convert k-space samples to matrix indices 
nxk=(n+1)/2 + (n-1)*real(k); 
nyk=(n+1)/2 + (n-1)*imag(k); 
% initialize the output matrix 
M=zeros(n,n); 
OM=zeros(n,n); 
 
% change the cartesian coordinate to one column, so that we can find  
% the cartesian point withing "rc" easily. 
[mxc, myc]=meshgrid(1:n, 1:n); 
mxc=mxc(:); 
myc=myc(:); 
 
% main loop, compute the BURS gridding value for each point 
for xc=ceil(1+rc):floor(n-rc) 
    for yc=ceil(1+rc):floor(n-rc) 
        if shape=='s' 
            [mxdc, mydc]=meshgrid(ceil(xc-rc):floor(xc+rc), ceil(yc-rc):floor(yc+rc)); 
            % get the Cartesian points in "square" neighborhood of (xc,yc) 
            xyc=mxdc(:)+i*mydc(:); 
            indc=ones(length(xyc),1);     % just to make to !=[] 
        elseif shape=='c' 
            % find the index of the Cartesian points in the "rc" neighborhood of (xc+yc*i) 
            indc=find( ((mxc-xc).^2 + (myc-yc).^2) <=rc^2+eps ); 
            if ~(isempty(indc)) 
                % get the Cartesian points in "circular" neighborhood of (xc,yc) 
                xyc=mxc(indc)+i*(myc(indc)); 
            end; 
        end; 
        % find the index of the Non-Cartesian points in the "kc" neighborhood of (xc+yc*i) 
        indk=find( ((nxk-xc).^2 + (nyk-yc).^2) <=rk^2+eps ); 
        % print the N (# of Cartesian points), and M (# of Non-Cartesian points) 
        % @ several positions along ky=0 axis.  
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        if (yc==64) & (mod(xc, 16)==0) 
            disp(strcat('N=', num2str(length(indc)), ... 
                        ',  M=', num2str(length(indk)), ... 
                        '  @(', num2str(xc), ',', num2str(yc), ')')); 
        end;                 
        if ~(isempty(indk)) & ~(isempty(indc)) 
            % get the Non-Cartesian points in "circular" neighborhood of (xc,yc) 
            xyk=nxk(indk)+i*(nyk(indk)); 
            A=interp2sinc(xyc, xyk); 
            % compute the regularized pseduo-inverse using "Tikhonov" window coefficients 
            if length(indk)<=length(indc)   % underdetermined case 
                pA=A'*inv(A*A'+r*eye(length(indk))); 
            else % overdetermined case 
                pA=inv(A'*A+r*eye(length(indc)))*A'; 
            end; 
            ind0=find( (xyc==xc+yc*i) ); 
            M(xc, yc)=pA(ind0, :)*d(indk); 
            OM(xc, yc)=sqrt( sum(pA(ind0, :).^2) ); 
        end; 
    end; 
end; 
%end 
 
%%%%%%%%%%%%%%%%%%%%%%% 
%  function interp2sinc   % 
%%%%%%%%%%%%%%%%%%%%%%% 
function A=interp2sinc(xyc, xyk); 
% function A=interp2sinc(xyc, xyk) 
% 2D interpolation using sinc function. 
% xyc: the column vector of Cartesian point positions,  
%       each position is represented by a complex number. 
% xyk: the column vector of Non-Cartesian point postion. 
% A: the linear transform matrix s.t. the (DATA@xyk)=A*(DATA@xyc); 
% 
% Zheng Li, Nov. 2004 
 
% pxy* is the postions in Cartesian(c) and Non-cartian(k) 
[pxyc, pxyk]=meshgrid(xyc, xyk); 
% the distances between each points of Cartesian and Non-Cartesian  
dist=pxyc-pxyk; 
A=sinc(real(dist)).*sinc(imag(dist)); 
 
% end 


