

EE-591 MAGNETIC RESONANCE IMAGING

TERM PROJECT

RECONSTRUCTION OF NON-

CARTESIAN DATA USING

BURS/RBURS ALGORITHM

Zheng Li

Department of Electrical Engineering

December 5, 2004

 1

1. INTRODUCTION
There are many alternatives to 2DFT acquisition methods. These include spiral scans,

radial scans, Lissajou trajectory scan and so on (Figure 1) [1]. Many of these have

specific advantages over spin-warp, such as speed and SNR efficiency. The main

disadvantage with these methods is the difficulty of reconstructing the resulting data sets.

There are many choices for non-Cartesian data sets image reconstruction. The first

approach is to collect the non-Cartesian data in a way that a previously known

reconstruction method can be applied. For example Filtered Back Projection (FBP) can

be applied for radial scans data set. While this solves the reconstruction problem, it

usually requires compromises in data acquisition. Second, the non-Cartesian data can be

demodulated point-by-point with the conjugate phase reconstruction. But this method is

very slow. The most computationally efficient method of reconstruction is to resample

the data onto a Cartesian grid, which enable the subsequent use of inverse fast Fourier

transform (IFFT), and post compensation, if necessary.

kx

kyb)

kx

ky K
y

K
x

 (a) (b) (c)
Figure 1. Some alternative acquisition methods. (a) Constant angular rate spiral, which can use projection

reconstruction method. (b) Lissajou trajectory (c) Spiral trajectory used in this project

In MRI, the most widely used resampling algorithm is gridding. Usually, the gridding

methods consist of four steps: 1) pre-compensation for varying sampling density; 2)

convolution with a Kaiser-Bessel window onto a Cartesian grid; 3) IFFT; 4) post-

compensation by dividing the image by the transform of the window. In this paper, the

Block Uniform Re-Sampling (BURS) and regularization Block Uniform Re-Sampling

(rBURS) are used to interpolate the non-Cartesian scan data. BURS and rBURS are both

 2

optimal/suboptimal and computationally efficient. Comparing to the conventional

gridding, neither pre- nor post-compensation are required, and the results were shown to

be of excellent accuracy.

2. THEORY
In this section, the theories for BURS algorithm will be introduced first. Then the

theoretical analysis of noise for BURS will be addressed. Finally, one noise reduction

solution for BURS, namely regularization BURS (rBURS), will be provided.

2.1 BLOCK UNIFORM RESAMPLING (BURS) ALGORITHM

The BURS algorithm can be summarized as follows:

1. Initialize an N by M matrix A with zeros (N and M represent the number of the

Cartesian grid points and the number of the non-uniformly sampled data points,

respectively)

#

2. For each Cartesian grid point k),,1(, Nii L= :

2.a. Select the iM non-uniformly sampled points in a kδ neighborhood of . ik

2.b. Select the iN Cartesian grid points in a k∆ neighborhood of . ik

2.c. Form a ii N×M matrix A of the interpolation coefficients based on the sinc

function.

2.d. Compute #A , the truncated singular value decomposition (SVD) pseudo-

inverse matrix of A .

2.e. Transfer the row of #A corresponding to the point to the i-th row of . ik #A

3. The uniform samples are calculated as x , where b is a column vector

containing the non-uniform data measurements.

bA #=

4. Perform an inverse Fourier transform (IFT) on the resulting uniform samples.

Figure 2 illustrates how to select the iM non-uniformly sampled points in a

kδ neighborhood of k and i iN Cartesian grid points in a k∆ neighborhood of k . The i kδ

and neighborhoods of the are illustrated as circle regions in the Figure 2. But in the

implementation, other shapes of neighborhood maybe used. For example, square

k∆ ik

 3

neighborhood can be used in Cartesian coordinate for computational efficiency and easier

implementation. Square and circular shapes of neighborhood are tested in our simulations.

In BURS algorithm, the selections of values for k∆ and kδ will dramatically affect

the final results (which will be shown in the simulations). When iN > iM , the pseudo-

inverse can be computed as:

 TT AAAA 1#)(−= (1)

When iN < iM , the pseudo-inverse can be computed as:

 1#)(−= TT AAAA (2)

The simulation results give some examples of how the reconstruction results varies

with different combination of iN and iM .

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
K

y

K
x

δ
k

∆
k

k
i

Figure 2. The illustration for BURS algorithm. The kδ and k∆ neighborhoods of the k in this

plot are defined as a circle regions. The big dots represents

i

iM non-uniformly sampled points in a

kδ neighborhood of k ; the big cross signs represent i iN Cartesian grid points in a

neighborhood of . k∆ ik

 4

2.2 EFFECT OF NOISE

Several papers have reported that although the BURS algorithm is very accurate, it is

also sensitive to the noise. As a consequence, even in the presence of a low level of

measurement noise, the resulting image is often highly contaminated with noise.

In the gridding process, each uniform output point at location k (i=1,…,N) is linearly

interpolated using

i

iM known data of non-uniform samples { i
i
m Mk ,,1, L=m } which are

within kδ neighborhood of k : i

 ∑
=

=
iM

m

i
mimi kfakf

1

)()((3)

where is non-uniform (non-Cartesian) input data; is the interpolated uniform

output(Cartesian) at k ; are the interpolation coefficients, in BURS algorithm, these

coefficients are derived by pseudo-inverse. Assuming the noise is additive and consists of

zero mean white Gaussian noise with variance , using above equation, it can be

derived that the noise of the interpolated data is additive Gaussian noise with zero

mean and the variance :

)(i
mkf)(ikf

i ima

2
iσ

2σ

)i(kf

 ∑
=

=
iM

m
imi a

1

222 σσ (4)

Because the interpolation coefficients vary as k changes, the noise level is space

dependent in k-space domain, even if we assume the noise is i.i.d in original non-

Cartesian k-space data. In Rosenfeld’s paper [4], the k-space “noise amplification” is

defined as:

i
2
iσ

 ∑
=

==Ω
iM

m
imii a

1

2/σσ (5)

Rosenfeld [4] tested this noise effect of BURS by using a four-interleaf spiral trajectory.

The was calculated for each uniform point. We also did the test on our spiral trajectory

and get similar results, which are show in Figure 3.

iΩ

 5

0 50 100 150
0

100

200

300

400

500

N
oi

se
 A

m
pl

ifi
ca

tio
n

 (a) (b)

Figure 3. Noise amplification iΩ using BURS for spiral trajectories. (a) the result from [4],

x-axis represents the distance from the origin of the k-plane. (b) The iΩ values for the row

 based on our own spiral trajectory. The x-axis represents the coordinate. 0=yk xk

Both results show that most points have a noise amplification of about unity, however

a substantial number of points have extreme high noise amplification number. This is the

reason that cause the reposted noise contaminated result for BURS algorithm. Although

only small part of k-space point have very high noise level, after the Fourier transform,

the noise will distributed across the whole image.

Equation (5) shows that the high noise amplification coefficients are due to the high

value of interpolation coefficients, which is the row of #A corresponding to the point .

We know that the solution of an inverse problem is unstable, which means that small

changes in the input data may lead to large perturbations in the results (ill-posed problem).

So it becomes clear that, the ill-conditioned matrixes

ik

ATA cause the large perturbations

in the coefficients and finally result in large noise level in reconstructed image.

2.3 REGULARIZED BLOCK UNIFORM RESAMPLING ALGORITHM
The basic ideal of the rBURS is to stabilize the matrix inversion solution by

modifying the problem in such a way that the inversion solution becomes less sensitive to

small perturbations in the data. At the same time, the solution to the modified problem

 6

must remain close to the original solution. Thus the original solution is replaced

by the approximate solution such that

bAx #=

bAx #
ρ=

 (6) bAbA ##
0

lim =
→

ρρ

where ρ is a positive smoothing parameter. We now focus on one type of regularization

technique, referred to as “spectral windowing”. By using equation (1),

 ∑ −− ==
k

k
T
kk ubvbAAAbA TT)()(11# α (7)

where are eigenvectors of AA ; are eigenvectors of A ; kv T
ku AT L≥≥ 21, αααk are

singular values. is computed as: bA#
ρ

 ∑ −=
k

k
T
kkkW ubvbA)(1# αρρ (8)

where W is called the “window coefficients”. There are many different definitions for

these coefficients including “Truncated singular system expansion” and “Tikhonov filter”

which are defined separately as:

kρ

 “Truncated singular system expansion” : (9)

 <

=
otherwise0

)/1(1 ρ
ρ

k
W k

 “Tikhonov filter” :
ρα

α
ρ

+
= 2

2

k

k
kW (10)

WhenW is defined as (10), it can be proved that can be computed as: kρ bAx #
ρ=

 bAIAAubvbAx TT

k
k

T
kkkW 11#)()(−− +=== ∑ ραρρ (11)

In our implementation, equation (11) is employed for regularization.

3. IMPLEMENTATION
In the real system, given the non-Cartesian k-space trajectory, kδ and , by using the

BURS algorithm described in section 2.1, the matrix can be calculated and saved pre

reconstruction. Whenever the data sampling is done and reconstruction is needed, the

matrix can be reloaded and used directly. By this way, the computational time is

shortened dramatically. But this method needs to process the huge size matrix , which

makes the data handling not so easy. In addition, in order to test the different parameter

k∆

#A

#A

#A

 7

combinations in this paper, the parameters kδ and k∆ change from time to time, which

makes change each time. So, in our simulation, instead of storing the huge matrix

and interpolating all points one time, the Cartesian point interpolation is done point by

point through the whole image.

#A

#A

; j,1L =

k∆

#A

TA(

() x−

|,0x

3.1 IMPLEMENTATION OF BURS/rBURS ALGORITHM

1. Initialize an N N matrix with zeros (the size of the image is N×N) × M

2. For each Cartesian grid point),,1,(, NNiij L=M :

2.a. Select the ijM non-uniformly sampled points in a kδ neighborhood of .

Form a

ijM

1×ijM column vector d usingij ijM known non-uniformly sampled data.

2.b. Select the ijN Cartesian grid points in a neighborhood of . ijM

2.c. Form a ijij N×M matrix A of the interpolation coefficients based on the sinc

function.

2.d-BURS. For BURS algorithm, =pseudo-inverse matrix of A .

2.d-rBURS. For rBURS algorithm, TAIAA 1#)−⋅+= ρ .

2.e. Let #a = row of corresponding to the point , #A ijM ijijij daM ⋅= #

3. Perform an inverse Fourier transform (IFT) on the . M

3.2 SHAPE OF THE NEIGHBORHOOD

In the real implementation, the neighborhood of the point (within radius), 00 yx r can

be defined at least in two different ways:

1. Circular Neighborhood with radius : Cr

 }||),,(|||),{(}{ 00 Cryyxyxodneighhorho ≤= (12)

2. Square Neighborhood with radius : Sr

 }|)|max(||),{(}{ 0 Sryyxyxodneighhorho ≤−−= (13)

Notice that, when the radiuses have the same value, the square neighborhood has

larger coverage area than that of circular neighborhood. To make both definitions have

the same coverage area, and should satisfy: Cr Sr

4

)2(22 ππ CSSC rrrr =⇒=⋅ (14)

 8

Circular neighborhood has the advantage that the closest (in the sense of norm2)

points from the center of the neighborhood are selected. Square neighborhood will select

some points (in the corner of the square) not so close to the center, but square

neighborhood is easier to implement and computational more effective. In the simulation,

two neighborhood definitions are tested and compared.

To make the comparison equitable, same “effective” radius r is used for different

shapes, then r and are computed using equation (14). Suppose both neighborhood

have same “effective” radius

C Sr

r , then:

For circular neighborhood: rrC = ; For square neighborhood:
4
πrrS = (15)

4. SIMULATIONS AND RESULTS

The data set used here is a simulated phantom using a spiral acquisition with 6

interleaves of 1536 samples. Center part of the trajectory is illustrated in Figure 2. Four

problems are studied in our simulation:

1) How the reconstruction result changes with k∆ and kδ . Figure 4 shows the results

for =1 while k∆ kδ varies from 0.3~1. Figure 5 shows the results for ∆ =2 while k

kδ varies from 0.5~1.4. Beyond these kδ ranges, the results become unacceptable.

2) How the shape of neighborhood (circular vs. square) affect the results. In the

simulation, the circular neighborhood is always used for kδ (non-Cartesian), circular

AND square neighborhoods are tested for k∆ (Cartesian points). Set the effective

radius =1, 2, 3 respectively, k∆ kδ values are chosen such that the best reconstruction

achieved for each case. Circular and square neighborhoods are tested with same

effective radius and k∆ kδ settings. Figure 6 shows the results.

3) BURS vs. rBURS algorithm. One image with high-SNR and one with low-SNR are

tested using BURS and rBURS algorithm respectively. The low-SNR image is

produced by adding Gaussian noise to K-space spiral sampled data.

4) Compare the result of BURS/rBURS with “true” image. The image reconstructed by

gridding w/ Pre-Density Compensation & Deapodization is used as the “original”

 9

image. Then we compare the best results produced by BURS and rBURS with the

“original” image. Figure 8 shows the images and the difference images. Figure 9.

shows the profile of the images.

 (a) kδ =0.3, =1; k∆ iM =3, iN =5@(64, 64) (b) kδ =0.4, k∆ =1; iM =4, iN =5@(64, 64)

 (c) kδ =0.5, =1; k∆ iM =5, iN =5@(64, 64) (d) kδ =0.7, k∆ =1; iM =12, iN =5@(64, 64)

 (e) kδ =0.9, =1; k∆ iM =35, iN =5@(64, 64) (f) kδ =1, k∆ =1; iM =37, iN =5@(64, 64)

Figure 4. Comparing different and k∆ kδ combinations for BURS algorithm. Circular neighborhoods are
used for and k∆ kδ . Fix ∆ =1, k kδ value is changed from 0.3 to 1. iM and iN values @ =(64,),(yx kk

 10

64) are provided for each case. It shows that when bad underdetermined case (iM >> iN) occurs, some
artifacts will appear in the reconstructed image.

 (a) kδ =0.5, =2; k∆ iM =5, iN =13@(64, 64) (b) kδ =0.7, k∆ =2; iM =12, iN =13@(64, 64)

 (c) kδ =0.9, =2; k∆ iM =35, iN =13@(64, 64) (d) kδ =1, k∆ =2; iM =37, iN =13@(64, 64)

 (e) kδ =1.2, =2; k∆ iM =43, iN =13@(64, 64) (f) kδ =1.4, k∆ =2; iM =51, iN =13@(64, 64)

Figure 5. . Comparing different ∆ and k kδ selections for BURS algorithm. Circular neighborhoods are
used for ∆ and k kδ . Fix ∆ =2, k kδ value is changed from 0.4 to 1.4. iM and iN values @

=(64, 64) are provided for each case. It shows that when bad underdetermined case (),(yx kk iM >> iN)
occurs, some artifacts will appear in the reconstructed image.

 11

 (a) kδ =0.6, =1, Circular k∆ kδ =0.6, k∆ =1, Square

 kδ =0.9, =2, Circular k∆ kδ =0.9, k∆ =2, Square

 kδ =1.3, =3, Circular k∆ kδ =1.3, k∆ =3, Square

Figure 6. Comparing “circular” neighborhood with “square” neighborhood for BURS algorithm. Circular
neighborhoods are always used for kδ ; circular and square neighborhoods are tested for ∆ . Fix the
“effective” neighborhood radius ∆ =1, 2 and 3,

k

k kδ values are selected such that best reconstruction result
is achieved for each case. The results show that different shapes of neighborhood have some but limited
effect (circular neighbor is little bit better) on reconstructed image.

 12

 (1a) Original w/ High SNR (2a) Original w/ Low SNR

 (1b) BURS result w/ High SNR (2b) BURS result w/ Low SNR

 (1c) rBURS result w/ High SNR (2c) rBURS result w/ Low SNR

Figure 7. Compare BURS with rBURS algorithm. Left column is for High SNR case, right column is for
Low SNR case. The “original” image is produced by gridding with Pre-Density Compensation &
Deapodization. Low SNR image is produced by adding Gaussian noise in K-space. For all BURS/rBURS
reconstructions, set kδ =1.5, =3. Regularization smoothing parameter ρ=0.01. k∆

 13

(a) Original Image

 (b) BURS (c) Difference Image
 between BURS and “original” image

 (d) rBURS (e) Difference Image for rBURS
 between rBURS and “original” image

Figure 8. Compare the best BURS and best rBURS results with “original” image. The “original” image is
produced by gridding with Pre-Density Compensation & Deapodization. The results shown here for BURS
and rBURS are the best results we get during the simulation. The difference image shown on the right is the
difference between BURS/rBURS with the original image.

 14

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Profile for Original Image @ row x=78

 0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) Profile for BURS Image @ row x=78

(c) Profile for rBURS Image @ row x=78

Figure 9. The profiles for different images shown in Figure 8.

5. CONCLUSIONS

 15

(1) Effect of neighborhood radius kδ and k∆ .

Figure 4 and 5 show that (i) If kδ is too small (kδ <0.3), then no matter how large the

is, we can not get very good result. (ii) Keep k∆ k∆ fixed, when kδ increases from a very

small number (around 0.3), the result will become better first, then become worse. For the

tested cases, when 0.~5.1/kk 2/k∆∆≈δ , the BURS produces best result. (iii) When

kδ fixed, increasing the value of k∆ , the result becomes better.

If we check the BURS algorithm more carefully, we will find that although kδ , k∆

will affect the result, they are not the root of the reason. In fact, it is iM and iN values

who really affect the result! In order to produce good results, iM should NOT exceed iN

too much. If iM >> iN occurs for some points (often occurs around the origin in k-plane,

because our spiral data is more dense around the origin which makes iM achieve it’s

maximum value around the origin), we can still get the result, however, there will be

some low frequency artifacts in the images (see Figure 4e, 4f, 5e, 5f). Now we can

explain the (i)~(iii) listed above based on iM and iN values. (i) iN and iM should not be

too small. (ii) iM can not exceed iN too much all the time, otherwise the result will have

some low-frequency artifact. (iii) the bigger the iN and iM , the better the result.

(2) Effect of the shape of the neighborhood.

Our results show that BURS with circular neighborhood will produce a little bit better

results than that of square neighborhood, but the differences are small (Figure 6).

(3) BURS vs. rBURS.

BURS is sensitive to the high level of noise as well as underdetermined case (Figure

7-1b, 2b). On the contrary, the rBURS is robust to the high level of noise as well as

underdetermined case (Figure 7-1c, 2c). rBURS is also robust in the case of combination

of high noise and underdetermined matrix. Even in this worst case, the result of rBURS

(Figure 7-2c) is still very close to the “original” image (Figure 7-2a), which is produced

using gridding with Pre-Density Compensation & Deapodization.

 16

(4) Fidelity of BURS/rBURS

 By checking the reconstructed images, difference images (Figure 8) and the profiles

of the reconstructed images (Figure 9), we can conclude that (I) The best results produced

by BURS and rBURS are very close to the “original” image. (II) There are some small

errors occur in high frequency components, i.e. some errors around the edges.

REFERENCES
[1] John Pauly. Image Reconstruction Textbook (in progress), Chaper 5: Reconstruction of non-Cartesian

Data.

[2] Rosenfeld D. An optimal and efficient new gridding algorithm using singular value decompositioin.

Magnetic Resonance in Medicine 1998; 40:12-23

[3] Moriguchi H, Wendt M, Duerk JL. Applying the uniform resampling (URS) algorithm a a Lissajous

trajectory: fast image reconstruction with optimal gridding. Magnetic Resonance in Medicine 2000;

44:766-781

[4] Rosenfeld, Daniel. New Approach to Gridding using Regularization and Estimation Theory, Magnetic

Resonance in Medicine 2002; 48: 193-202

APPENDIX MATLAB CODES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% EE591 MRI %
% Term Project BURS & rBURS %
% Zheng Li, Dec. 2004 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear; close all; n=128;

load rt_spiral.mat; %{d: data; k: sampling kernel; w: weight}
%load noise_spiral; %{nd: additive Gausian noise} load same random noise data each time
%d=nd+d;

erc=3; % (effective) radius of delta-k neighborhood in Cartesian coordinate
rk=1.3; % radius of delta-k neighborhood in Non-Cartesian coordinate
shape='c'; % shape of the neighorhood, 'c'-->circular; 's'-->square

% for sqare neighorhood, rc=effective r * sqrt(pi/4)
if isequal(shape, 's')
 rc=erc*sqrt(pi/4);
 disp(strcat('Square Neighborhood, Radius=', num2str(rc)));
end;
% for circular neighorhood, rc=effective r
if isequal(shape, 'c')
 rc=erc;
 disp(strcat('Circular Neighborhood, Radius=', num2str(rc)));
end;

if (0) %BURS
 [MB, OMB]= gridBURS(d,k,n, rk, rc, shape); % call BURS gridding function;
 imgB=ift(MB);
 figure; imagesc(abs(imgB));
 axis square; colormap('gray'); colormenu; axis off;
else % rBURS

 17

 [MrB, OMrB]=gridrBURS(d, k, n, rk, rc, 0.01, shape); % call rBURS gridding function
 imgrB=ift(MrB);
 figure; imagesc(abs(imgrB));
 axis square; colormap('gray'); colormenu; axis off;
end;

%%%%%%%%%%%%%%%%%%%%%%%
% function BURS %
%%%%%%%%%%%%%%%%%%%%%%%
function [M, OM] = gridBURS(d,k,n,rk,rc,shape)

% function [M, OM] = gridBURS(d,k,n,rk,rc)
% Block Uniform ReSampling method for gridding
% d -- k-space data
% k -- k-trajectory, scaled -0.5 to 0.5
% n -- image size
% rk-- non-cartesian kernel radius
% rc-- cartesian kernel radius
% shape-- choose circle (=='c') neighborhood
% or square neighborhood (=='s') for Cartesian points
%
% M -- K-space interpolated data
% OM-- noise amplification (defined in Rosenfeld 2002 Magn Reson Med)
%
% Zheng Li, Nov. 2004

% convert to single column
d=d(:);
k=k(:);

% convert k-space samples to matrix indices
nxk=(n+1)/2 + (n-1)*real(k);
nyk=(n+1)/2 + (n-1)*imag(k);
% initialize the output matrix
M=zeros(n,n);
OM=zeros(n,n);

% change the cartesian coordinate to one column, so that we can find
% the cartesian point withing "rc" easily.
[mxc, myc]=meshgrid(1:n, 1:n);
mxc=mxc(:);
myc=myc(:);

% main loop, compute the BURS gridding value for each point
for xc=ceil(1+rc):floor(n-rc)
 for yc=ceil(1+rc):floor(n-rc)
 if shape=='s'
 [mxdc, mydc]=meshgrid(ceil(xc-rc):floor(xc+rc), ceil(yc-rc):floor(yc+rc));
 % get the Cartesian points in "square" neighborhood of (xc,yc)
 xyc=mxdc(:)+i*mydc(:);
 indc=ones(length(xyc),1); % just to make to !=[]
 elseif shape=='c'
 % find the index of the Cartesian points in the "rc" neighborhood of (xc+yc*i)
 indc=find(((mxc-xc).^2 + (myc-yc).^2) <=rc^2+eps);
 if ~(isempty(indc))
 % get the Cartesian points in "circular" neighborhood of (xc,yc)
 xyc=mxc(indc)+i*(myc(indc));
 end;
 end;
 % find the index of the Non-Cartesian points in the "kc" neighborhood of (xc+yc*i)
 indk=find(((nxk-xc).^2 + (nyk-yc).^2) <=rk^2+eps);
 % print the N (# of Cartesian points), and M (# of Non-Cartesian points)
 % @ several positions along ky=0 axis.
 if (yc==64) & (mod(xc, 16)==0)
 disp(strcat('N=', num2str(length(indc)), ...
 ', M=', num2str(length(indk)), ...
 ' @(', num2str(xc), ',', num2str(yc), ')'));
 end;
 if ~(isempty(indk)) & ~(isempty(indc))
 % get the Non-Cartesian points in "circular" neighborhood of (xc,yc)

 18

 xyk=nxk(indk)+i*(nyk(indk));
 A=interp2sinc(xyc, xyk);
 pA=pinv(A); % pinv can handle over/under determined cases automatically
 ind0=find((xyc==xc+yc*i));
 M(xc, yc)=pA(ind0, :)*d(indk);
 OM(xc, yc)=sqrt(sum(pA(ind0, :).^2));
 end;
 end;
end;
%end

function [M, OM] = gridrBURS(d,k,n,rk,rc,r,shape)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function rBURS %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 function [M, OM] = gridrBURS(d,k,n,rk,rc,r,shape)
% regularized Block Uniform ReSampling method for gridding
% d -- k-space data
% k -- k-trajectory, scaled -0.5 to 0.5
% n -- image size
% rk-- non-cartesian kernel radius
% rc-- cartesian kernel radius
% shape-- choose circle (=='c') neighborhood
% or square neighborhood (=='s') for Cartesian points
% r -- regularization smoothing parameter
%
% M -- K-space interpolated data
% OM-- noise amplification (defined in Rosenfeld 2002 Magn Reson Med)
%
% Zheng Li, Nov. 2004

% convert to single column
d=d(:);
k=k(:);

% convert k-space samples to matrix indices
nxk=(n+1)/2 + (n-1)*real(k);
nyk=(n+1)/2 + (n-1)*imag(k);
% initialize the output matrix
M=zeros(n,n);
OM=zeros(n,n);

% change the cartesian coordinate to one column, so that we can find
% the cartesian point withing "rc" easily.
[mxc, myc]=meshgrid(1:n, 1:n);
mxc=mxc(:);
myc=myc(:);

% main loop, compute the BURS gridding value for each point
for xc=ceil(1+rc):floor(n-rc)
 for yc=ceil(1+rc):floor(n-rc)
 if shape=='s'
 [mxdc, mydc]=meshgrid(ceil(xc-rc):floor(xc+rc), ceil(yc-rc):floor(yc+rc));
 % get the Cartesian points in "square" neighborhood of (xc,yc)
 xyc=mxdc(:)+i*mydc(:);
 indc=ones(length(xyc),1); % just to make to !=[]
 elseif shape=='c'
 % find the index of the Cartesian points in the "rc" neighborhood of (xc+yc*i)
 indc=find(((mxc-xc).^2 + (myc-yc).^2) <=rc^2+eps);
 if ~(isempty(indc))
 % get the Cartesian points in "circular" neighborhood of (xc,yc)
 xyc=mxc(indc)+i*(myc(indc));
 end;
 end;
 % find the index of the Non-Cartesian points in the "kc" neighborhood of (xc+yc*i)
 indk=find(((nxk-xc).^2 + (nyk-yc).^2) <=rk^2+eps);
 % print the N (# of Cartesian points), and M (# of Non-Cartesian points)
 % @ several positions along ky=0 axis.

 19

 20

 if (yc==64) & (mod(xc, 16)==0)
 disp(strcat('N=', num2str(length(indc)), ...
 ', M=', num2str(length(indk)), ...
 ' @(', num2str(xc), ',', num2str(yc), ')'));
 end;
 if ~(isempty(indk)) & ~(isempty(indc))
 % get the Non-Cartesian points in "circular" neighborhood of (xc,yc)
 xyk=nxk(indk)+i*(nyk(indk));
 A=interp2sinc(xyc, xyk);
 % compute the regularized pseduo-inverse using "Tikhonov" window coefficients
 if length(indk)<=length(indc) % underdetermined case
 pA=A'*inv(A*A'+r*eye(length(indk)));
 else % overdetermined case
 pA=inv(A'*A+r*eye(length(indc)))*A';
 end;
 ind0=find((xyc==xc+yc*i));
 M(xc, yc)=pA(ind0, :)*d(indk);
 OM(xc, yc)=sqrt(sum(pA(ind0, :).^2));
 end;
 end;
end;
%end

%%%%%%%%%%%%%%%%%%%%%%%
% function interp2sinc %
%%%%%%%%%%%%%%%%%%%%%%%
function A=interp2sinc(xyc, xyk);
% function A=interp2sinc(xyc, xyk)
% 2D interpolation using sinc function.
% xyc: the column vector of Cartesian point positions,
% each position is represented by a complex number.
% xyk: the column vector of Non-Cartesian point postion.
% A: the linear transform matrix s.t. the (DATA@xyk)=A*(DATA@xyc);
%
% Zheng Li, Nov. 2004

% pxy* is the postions in Cartesian(c) and Non-cartian(k)
[pxyc, pxyk]=meshgrid(xyc, xyk);
% the distances between each points of Cartesian and Non-Cartesian
dist=pxyc-pxyk;
A=sinc(real(dist)).*sinc(imag(dist));

% end

