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Abstract 
 
In this report we discuss the design of a two dimensional spatially selective RF pulse for 
a pencil beam excitation, given a resolution and Field of View(FOV). We take into 
consideration the hardware limitations for gradient and gradient slew rate. We begin with 
the design of the requisite spiral k-space trajectory and the corresponding gradients 
followed by the design of the weighting function and the RF pulse.  We also study the 
effect of different k space weighting functions, gradient delays and off resonance on the 
excitation profile. The report concludes with the design and evaluation of a variable 
density spiral k-space trajectory. 
 
Introduction 
 
The application of an RF field (B1) in the presence of B0 alone excites all the spins in the 
volume that are sensitive to the excitation coil.  The excitation of a portion of the volume 
can be achieved by the application of an RF pulse with modulation function B1(t) in the 
presence of gradient fields (Gx and/or Gy and/or and/or Gz). Those spins having resonant 
frequencies within the bandwidth of B1(t) are excited, which are  imaged later on using 
suitable phase encoding and frequency encoding gradients [1]. We can compute the 
excitation profile by solving the coupled differential equations arising from the Bloch 
equation. But such coupled differential equations are difficult to solve explicitly. Hence 
to decouple to such equations we assume that the initial magnetization is [0 0 M0] and 
that the RF pulse is “weak” leading to a small tip angle. The solution of the resulting 
simplified equations gives the excitation profile. All the derivations in this project are 
based on small tip excitation. 
 
Multidimensional spatially selective RF pulses are used for restricting the area under 
consideration by reducing the field of view. By using different k-space trajectories we 
can achieve specific excitation patterns like cylinders and cubes. Two-dimensional 
spatially selective radio-frequency pulses that are based on spiral gradient waveforms are 
used to excite a pencil-beam–shaped region. The desired resolution and FOV can be 
achieved by appropriately selecting the spiral properties like maximum radius, number of 
turns, density of the spiral etc. This project deals with spatially selective RF pulses using 
spiral trajectories. All the design steps and equations are taken from [2]. 
 
 
 
 
 
 
 
 



Objectives: 
 

1. To design an RF waveform that excites a cylinder of diameter 4 cm (with 
resolution = 1cm and FOV = 16 cm),  

• Using spiral k-space trajectory sampled at non-uniform angular rate to 
use the gradient system more efficiently, 

 with constant k-space weighting function. 
 with windowed jinc k-space weighting function. 

2. To plot the excitation profiles with the designed RF pulses. 
3. To shift the selected excited area by 2 cms in x direction and 2 cms in the y 

direction. 
4. To study the effect of gradient delay on the excitation profile. 
5. To study the effect of off-resonance on the excitation profile. 
6. To design a variable density spiral and to study its effects on the excitation 

profile. 
 
Theory: 
 
The solution of Bloch Equation using small tip angle approximation is given by, 
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From equation (2) we get that the magnetization is the inverse transform of P(k).  
where, 
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Outline of the two dimensional RF pulse design : 
 

1. Choose a k space trajectory that (approximately) uniformly covers the k space. 
Select the k space extent and the sampling density depending on the required 
spatial resolution and the FOV respectively. 

2. Compute the gradient waveforms from the k space. 
3. Choose a weighting function according to the desired excitation profile. The 

inverse Fourier transform of the weighting function is the excitation profile. 
4. Design the RF pulse 

From equation (3) we get, 
         

                      
/),('/

)(1
)),((

tk

B
tkW

!

!"
! =  

                              

                                 
/)(/

)(1

!"

!"

G

B
=  

                            

                                             
/)(/

)(1

!

!

G

B
=  

          Thus RF can be calculated from the gradients and the weighting function 
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 Design of spiral k-space trajectory: 
 
Pulse length, (T) = 5ms 
Maximum gradient = 4 G/cm                          Hardware limitations 
Maximum Slew Rate = 15 G/cm/ms 
Required Resolution, (Δr) = 1cm 
Required FOV, (FOV) = 16 cm 
Δr = 1/2kmax, kmax is the maximum k space extent 
Therefore, kmax = 1/2 Δr= 1/(2*1cm) 
                                         =0.5 cycles/cm 
 
FOV=1/ Δk=2*N/ (2*kmax) =2*N* Δr, where N is the number of turns of the spiral 
Therefore, N= FOV/ (2* Δr) 
                     = 16/ (2*1) 
                     = 8 turns 
 
The equation of the constant angular rate spiral (inward) k space trajectory used in the 
project is given below,  
 
                        ( ) ))1(2exp(1max)( tNitktkr !!= "   ---------------(given in fig 1) 



where “t” varies from 0 to 1 in constant steps of “1/1023”.i.e there are 1024 sample 
points. The impulse response of the spiral can be computed by taking the Fourier inverse 
of the trajectory (fig2). 
 
 
  
 
 
          
 
                 
 
 
 
 
 
 
 
 “kx” is the real part of “kr” and “ky” is the imaginary part of “kr”. “kx” and “ky” are 
shown in fig 3 and fig4 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Design of 2D Gradients: 
 
kx (t) and ky(t) are defined in terms of gradients Gx and Gy respectively as given below, 
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Therefore the gradients can be calculated from kx and ky as, 
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Fig 3.  kx in cycles /cm of the trajectory designed 
in fig 1.   

Fig 4. ky in cycles/cm of the trajectory designed 
in fig 1. 

  

 

Fig 1. Spiral Trajectory, N=8turns, 
FOV=16cm, Δr=1cm 

Fig 2. Impulse response of the trajectory 
given in fig1 
 

 



Slew rate (Sx and Sy) of the gradient pulses are the derivative with respect to time of the 
gradients and hence they can be calculated from kx and ky. 
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The gradient waveforms and the slew rates for the designed spiral trajectory are given in 
fig (5) and fig (6) respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From fig (5) and fig (6) we can see that the maximum values of the gradients and the 
slew rates are reached only at one end. But for greater efficiency we would want the 
gradients or the slew rates to always be at the maximum values during the entire pulse. 
Thus, this design does not efficiently use the hardware capabilities. If the rate at which 
the spiral trajectory is traversed is changed the gradient waveforms will also change. 
Hence, efficiency can be improved by using non uniform angular sampling rate so as to 
speed up the trajectory when it is below the constraint and slow it down when it is over it. 
For designing a non uniform angular rate spiral a matlab mfile from [2] has been used. 
The designed spiral, kx and ky, gradient waveforms and the slew rates are given in fig 
(7),fig (8), fig(9) and fig(10) respectively. The gradients designed here are not very 
accurate because practically they should begin and end at zero. These gradients can be 
made to end at zero by ramping it over to zero. 
 
 
 
 
 
  
 
 
 
 
 

  

Fig 5. Gradient waveforms, Gx G/cm and Gy 
G/cm for the constant angular rate spiral of fig 1. 

Fig 6. Gradient slew rate waveforms, sy G/cm/ms 
and sx G/cm/ms for the constant angular rate spiral 
of fig 1 

  

 Fig 7. Spiral Trajectory with  
variable angular rate sampling 

Fig 8. kx (cycles/cm) and ky (cycles/cm) waverforms for the 
trajectory designed in fig 7 



 
 
 
 
 
 
 
 
 
 
 
 
 
Design of weighting Function: 
 
The weighting function deposits RF energy at discrete locations in the k-space. In this 
project we have designed RF pulse for two different weighting functions. 

1. uniform k space weighting:  
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(fig11). This type of weighting generates excessive ringing.  
 
2. windowed jinc k space weighting: 

The windowed jinc weighting used here are of space bandwidth 4 and 8. 
            The weighting function with space bandwidth of 4 (fig 12) is given by, 
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Design of RF Pulse: 
 

1. For uniform k space weighting 
From equation (5) we have 

        

Fig 7 Fig 8 

  
Fig 9. Gradient waveforms, Gx (G/cm) and Gy 
(G/cm) for the trajectory given in fig 7. 

Fig 10. Gradient slew rate waveforms, sx 
(G/cm/ms) and sy (G/cm/ms for trajectory in fig 7 

  
Fig 11. Uniform k space weighting 
function 

Fig 12. Windowed jinc k space weighting 
function 
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 i.e. in the case of uniform k space weighting the RF pulse is simply the absolute                  
value of the gradients used. The designed RF pulse is given in fig 13. 

 
2. For windowed jinc k space weighting 

From equation (5) we have 
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     The designed RF pulse is given in fig 14. 
 
 
 
 
 
 
 

     
 
 
 
Computation of Excitation Profile:  
 
The excitation profiles were generated using a matlab function given on [2]. This 
function takes the normalized designed RF and the gradients as input and using spinors 
calculates the excitation profile. The excitation profile for the RF with uniform k space 
weighting is given in fig 15 and that for the RF with windowed jinc weighting is given in 
fig 16. The RF pulse was designed for exciting a cylinder of 4 cm diameter.  
 
 
 
 
 
 
 
 
 
 

  
 Fig 13. Designed RF pulse (with uniform  
weighting) 

Fig 14. Designed RF pulse (with windowed jinc 
weighting) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) (e) 

  

   

(a) (b) 

(f) (g) (h) 
   

< 4 cm 
diameter 
circle 

Fig 15.Excitation profiles using uniform k space weighting (a) real parts and negative of imaginary parts of the 1D 
excitation profile. (b) absolute values of the 1D excitation profile. (c)(f) real parts of the 2D excitation profile (Mxy). 
(d)(g) negative of the imaginary parts of the 2D excitation profile (Mxy). (e)(h) absolute values of the 2D excitation 
profile (Mxy). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                
  
                                                                                      
 
 
 
 
From fig (15) and fig (16) we can see that in the case of uniform weighting function a 
much smaller region than for what it was designed is excited. Whereas by using 
windowed jinc weighting function a circle of approximately 4 cm (as designed) is 
excited. Uniform weighting also results in ringing (evident from the 1D profile). Hence, 
we can conclude that windowed jinc k space weighting gives better results than uniform k 
space weighting. 
 

4 cm 
Diameter 
circle 

  
(a) (b) 

   

(c) (d) (e) 

   

(f) (g) (h) 

Fig 16. Excitation profiles using windowed jinc k space weighting (a) real parts and negative of imaginary parts of 
the 1D excitation profile. (b) absolute values of the 1D excitation profile. (c)(f) real parts of the 2D excitation 
profile (Mxy). (d)(g) negative of the imaginary parts of the 2D excitation profile (Mxy). (e)(h) absolute values of 
the 2D excitation profile (Mxy). 
 



Shifting the excitation profile: 
 
All the excitation profiles discussed above were at the isocenter. We can shift the 
excitation profile by modulating the RF pulse )(1 !B . From equation (1) we know that 
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Modulating )(1 !B  we obtain, 
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Substituting  )(1 !B   by )(1 !mB  in equation (1) we get the transverse magnetization 
( )),( trMxym  as, 
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From the above equation we see that by modulating the RF pulse by )),,(2exp(

o
rtk !"#  

the excitation profile shifts by r0. Hence when r0 is 2+0j the excitation profile shifts by 2 
cms in the x direction (fig(17)(b)) and when r0 is 0+2j the excitation profile shifts by 
2cms in the y direction (fig(17)(d)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
  

  

(c) (d) 

Fig 17. (a) and (b) shows the real part of the modulated RF pulse and the corresponding 2D excitation profile 
resp. for a shift of 2 cm in the x-direction. (c) and (d) shows the real part of the modulated RF pulse and the 
corresponding 2D excitation profile resp. for a shift of 2 cm in the y-direction. The trajectory used had N=8 
turns, SBW=8, FOV=16cm, Δr=1cm and windowed jinc weighting was used. 



Effect of Gradient Delays on the excitation profile: 
 
The time lag between the instant when the gradient is expected to begin and when it 
actually begins is defined as gradient delay. 
 

1. the excitation profile with a constant angular rate spiral: 
Equation for constant angular rate spiral as defined before is 
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If the gradient delay is δ then the equation of the spiral changes to 
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For small values of δ, 
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        This shows that gradient delay of δ leads to the rotation of the spiral trajectory        
by TN /2 !"  and   hence the rotation of the excitation profile about the isocenter (fig 
18(a)). 
 

2. the excitation profile with a variable angular rate spiral: 
A spiral with variable angular rate sampling is given by, 
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 Where, τ(t) is the angular rate at which the spiral is traversed. 
For a small gradient delay of δ, 
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 Thus, in the case of variable angular rate spirals each spatial frequency is rotated by a 
different amount (fig 18 (b)). 
 

 
 
 
 
 
 
 
 

  
Fig 18. (a) Excitation profile with a gradient delay of 15microsecs and a shift 
of 4cm along x for a constant angular rate spiral. (b) Excitation profile with a 
gradient delay of 15microsec and a shift of 4cm along x for a variable angular 
rate spiral. The spiral trajectory used had N= 12 turns, SBW=8,FOV=24cm and 
windowed jinc k space weighting was used. 

(a) (b) 



Effect of Off resonance on the excitation profile: 
 
Off resonance can occur due to various reasons such as main field inhomogeneity, 
susceptibility difference, chemical shift etc.  
From equation (5) we have, 
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If B1(t) is applied at an off resonant frequency “ω” , then the actual weighting Wa(k(t)) is, 
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Substituting the W(k(t)) by Wa(k(t)) we compute the excitation profile for off resonance 
condition. It is seen from fig (19) (a) and fig (19) (b) that off resonance blurs the 
excitation profile. It is also evident that greater the off resonance greater is the blur. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Variable Density Spirals [3]: 
 
The gradients define the k space trajectory and the excitation profile by depositing RF 
energy at discrete locations in the k space. Generally the trajectories traverse the k space 
with equal resolution. However, these methods generate aliasing signals outside the 
excitation field of view. In variable density spirals the central region of the k space (low 
frequencies) is sampled with higher resolution. That is, greater RF energy is deposited in 
these regions. Variable density spirals remove unwanted signals from outside the 
excitation field of view. In this project we compare the excitation profiles obtained using 
uniform density spiral (N= 12 turns, resolution=1cm, kmax=0.5 cycles/cm) and those 
obtained using variable density spiral (N=12 for /0.5/>k>/0.25/, N increasing linearly 
from 18 to 24 (N=12t+12) for /0.25/>k>0, kmax=0.5 cycles/cm). As expected, from fig 

  

(a) (b) 

Fig 19. (a) excitation profile with an off resonance of -220Hz. (b) excitation profile with 
an off resonance of -440Hz. The spiral trajectory used had N=12 turns, SBW=8, 
FOV=24cm and uniform k space weighting was used. 



20, we see that the unwanted signals outside the excitation field of view are reduced by 
using variable density spiral. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 

(d) (e) 

(f) (g) 

  

  

  

  
Fig 20. (a), (c), (d) and (f) shows the plot of # of turns verses /K/ cycles/cm, spiral trajectory and 
the 2D excitation profiles resp. for a uniform density spiral trajectory. (b), (d),(e) and (g) shows the 
plot of # of turns verses /K/ cycles/cm, spiral trajectory and 2D excitation profiles resp. for a 
variable density spiral trajectory. 
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