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Introduction 
 
Compressed sensing allows us to recover objects reasonably well from highly 
undersampled data, in spite of violating the Nyquist criterion. In the context of MRI, this 
technique is appealing since a smaller dataset implies faster imaging. This work seeks to 
explore the mathematics of compressed sensing and to look for ways to generate 
optimal sampling patterns.  The content of this report includes the following: 

• A simplified overview of compressed sensing 
• Optimality measures for sampling patterns 
• Methodology used for optimally sampling 16x16 images 
• Analyses and simulation results based on optimal sampling of 16x16 images 

 
 
 
Overview 
 
In order to recover an object x ∈ RN from a measurement set f ∈ RM is where M << N, 
we have to solve an extremely ill-posed problem:  
 

u x fΦ = , 
 (1) 

where  ∈ RuΦ MxN is the measurement system (the undersampled Fourier basis in the 
case of MRI). This is an underdetermined system and has infinitely many solutions.  So 
how do we make this problem tractable? 
The success of compressed sensing rests on two key tenets. The first key idea of 
compressed sensing is to add more information to the inverse problem by exploiting the 
idea that we can find a basis Ψ ∈ RNxN, in which, the objects we intend to image will 
have a sparse representation. In other words,  
 

sx Ψ= , 
(2) 

where ∈ Rs N and has at most K non-zero elements.  How this extra information is 
added will be explained shortly, in the context of the inverse problem formulation. 
Before that, we are still to find a way to prevent aliasing artifacts in the reconstructed 
image due to severe undersampling in the dataset f. This leads us to the second key 
idea, which is to make sure that the systems uΦ  and Ψ are incoherent. This ensures 
that the aliasing artifacts will appear noise-like in the Ψ  domain and are spread out over 
all the bases. Thus, the K dominant elements of  are less likely to be corrupted by 
aliasing.  

s

Now, let us look at the formulation of the complete inverse problem: 



minimize  
1

x∗Ψ  

s.t.           
2u x f εΦ − <   

(3) 
The first condition involving the minimization of the L1 norm of  imposes the 
sparseness condition as illustrated in Figure 1 [1].  The second condition, where ε is a 
small positive number, ensures that the solution is consistent with the data f.  

xs ∗Ψ=

 
 
 

   
 
 

Figure 1: (a) A sparse vector s lies on a K-dimensional hyperplane aligned with the 
coordinate axes in RN and thus close to the axes. (b) L2 minimization gives us the point 
where the largest hypersphere touches the nullspace (green hyperplane), (c) L1 
minimization will give us a point near the coordinate axes, which is where the sparse 
vector s is located. [1] 
 
 
Optimal Sampling 
 
The primary question this work is aiming to tackle is this:  How do we choose the best 
sampling pattern and hence the undersampling measurement operator, Φ ?  The 
existing literature point at two main approaches: 

u

 
• Correlation-based approach  

Assuming Φ , ∈ RΨ NxN are orthobases, the coherence between the two is given by 
equation (4) [2,3].  

 
( ) jkNjk

N ψφµ ,max,
,1 ≤≤

=ΨΦ  

(4) 
The idea is to choose  for a fixed Φ Ψ  such that they are maximally incoherent, for 
reasons mentioned before. It can be shown that ( ) [ ]N,1, ∈ΨΦµ .  Also, random 
matrices are largely incoherent with any given basis Φ .  Herein lies the success of 
random sampling schemes.  
Another way to measure the coherence is to look at the maximum side-lobe-to-peak 
ratio in the transform point spread function defined in [4] as: 



ij eejiTPSF ΦΨΦΨ= ∗∗∗),( , 
(5) 

The two measures have similar connotations and similar computational costs (as we 
shall see later). 
 

• Combinatorial approach  
As illustrated in Figure 2, we may look at the measurement, f, as a linear 
combination of K columns of uΘ = Φ Ψ , where , uΘ Φ  ∈ RMxN, Ψ ∈ RNxN. If we knew 
beforehand which of the K elements of s are non-zero, we could have constructed a 
stable, well-conditioned system Θ , by making sure it preserves the lengths of the 
particular K-sparse vectors, as given by the restricted isometry property [2] in 
equation (6): 

+→
Θ

−= 01
2

2

s
s

sδ  

(6) 
In real life, we do not know the particular K non-zero locations. Thus we would have 
to verify equation (6) for every one of the  groups of columns in every possible 

 ∈ R
K

N C

uΦ MxN. This appears to be a daunting task considering the prohibitively 
expensive computations involved! 
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 2D Fourier and Wavelet 
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(7) 
et operators respectively. 
ust first represent the 2D 



transforms in the equations (7) as linear transformations of the stacked image vector x ∈ 
RN (N=256). We use the fact that the separable 2D transform matrix can be written as 
the Kronecker tensor product of the 1D transforms: 

1 1

1 1

D D

D D

Φ = Φ ⊗ Φ
Ψ = Ψ ⊗ Ψ

 

(8) 
Once these operators have been constructed, we can formulate our problem in the form 
described in Figure 2.  
We pose our analysis as a series of questions, which will be answered in the next 
section: 

1. For given N and (the full Fourier operator in this case), what should we 
chose? 

Φ Ψ

2. What are the computational costs involved in using the two different approaches 
for finding optimal patterns for a given object size N?  

3. For given N, Φ , and , and for M samples, whatΨ uΦ  should be optimal? 
 
Results 
 
The Wavelet Transform 
 
We look for an answer to question 1 assuming N = 256 and Φ is the full (orthonormal) 
Fourier matrix. The answer will decide two key things: the sparsity, K, of s and the 
natural coherence ( ΨΦ, )µ  between the two bases.  The first of these is primarily 
determined by the coarseness level. Figure 3 shows our 16x16 test object, and its level 
2 Haar transform.  Figure 4 shows plots of the level 2, 3, and 4 Haar coefficients (the 
level 4 coefficients being the pixel intensities in the object itself). Figure 5 shows the 
level 2 Coiflet-2 transform coefficients and the image reconstructed from the 15 largest 
of these indicating the compressibility of our test object. 
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Figure 3: The 16x16 test object (left) and its level 2 Haar transform (right) 
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(b)                                                          (c) 
Figure 4:  Haar Coefficients for levels (a) 2,  (b) 3, and  (c) 4 (actual pixel intensities) 
respectively  
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Figure 5:  (a) Level 2 transform using Coiflet-2 wavelets (b) Image constructed from the 
15 largest coefficients indicating compressibility 
 



The coefficients were computed for different wavelets generated using WaveLab 850, 
and it was observed that the fraction of nonzero coefficients was about 7% for level 2 
and about 20% with level 3.  Next we use equation 4 to compute the coherence of 
different wavelet bases with the Fourier bases.  The results are shown in tables I and II 
for N = 256 and N = 1024 respectively. 
 

Table I 
Coherence measures between wavelet bases and the Fourier bases for N = 256 

 
Level K Haar-2 Coiflet-2 Daubechies-4 Symmlet-4 
2 ~7% 4 4 4 3.999 
3 ~20% 2 2 2 1.999 
4 -  1 1 1 1.000 

 
Table II 

Coherence measures between wavelet bases and the Fourier bases for N = 1024   
 

Level Haar-2 Coiflet-2 Daubechies-4 Symmlet-4 
2 8 8 8 7.999 
3 4 4 4 3.999 
4 2 2 2 1.999 
5 1 1 1 1.000 

 
The analysis gives us similar results for different wavelet types.  Also, it indicates a 
tradeoff between sparsity and incoherence.  So we shall be looking at optimal sampling 
patterns for both levels 2 and 3.  Also, we choose the Haar bases for their inherent 
simplicity and ease of implementation. 
 
Computational Costs 
 
Next, we address question 2 and look at the computational costs involved in using the 
two different approaches for finding optimal patterns for a given object size N.  Table III 
lists the number of iterations in the combinatorial approach and the correlation-based 
approaches.  

Table III 
Number of iterations required by different approaches 

 
Number of ways to pick m 
samples from n:  nCm 

Combinatorial Coherence SPR 

16C4  = 1820 256C16 ~1025 65536 65280 
32C8 = 10518300 1024C32 ~1060 1048576 1047552 

 
In order to handle larger images and more phase encodes, we would have to resort to 
Monte Carlo simulations as was done in [4].  Currently, we are restricting ourselves to a 
16x16 image and 4 phase encodes.  
 
Optimal Sampling Patterns   
 
The coherence computations revealed a minimum coherence level of 1. There was a set 
of patterns corresponding to this coherence level. “Masks” for the corresponding 



sampling patterns were generated and the Fourier matrix, Φ , was zero-padded.  This 
zero-padded matrix is then used to generate undersampled k-space data and to 
reconstruct the object.  The Sparse MRI V0.2 set of Matlab functions was used for 
reconstruction.  Figure 6 shows the first test object.  Figure 7 shows a set of phase 
encode levels that lead to minimum coherence and lastly the reconstructed image.  
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Figure 6: The first test object (same as the one used before for analyzing wavelets) 
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(a)                                                                      (b) 

 
Figure 7: (a) A set of 4 phase encode levels that lead to minimum coherence, and (b) the 
reconstructed image.  
 
The reconstructed image does not look too good obviously because data around center 
of k-space is missing.  To get around this, we pick a different sampling pattern that gives 
the same minimum coherence, but includes the central phase encode levels.  Figure 8 
shows this sampling pattern, the initial guess generated from a backward projection of 
the zero-padded Fourier matrix on the undersampled data, and lastly the reconstructed 
image.  A second test object is shown in Figure 9. The reconstruction results for this 
object for the sampling pattern in Figure 8(a) is shown in Figure 10. 
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(b)                                                                        (c) 

Figure 8: (a) Optimal sampling pattern that includes central phase encode levels, (b) the 
initial guess generated from a backward projection of the zero-padded Fourier matrix on 
the undersampled data, and (c) the much smoother reconstructed image.  
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Figure 9: Second test object: Another 16x16 image derived from a web icon. 
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Figure 10: (a) The blurry initial guess generated from a backward projection of the zero-
padded Fourier matrix on the undersampled data and (b) the reconstructed image. 
 
 
Conclusion 
 
The main goals of this project were to develop an understanding of compressed sensing 
in the context of its application in MRI, to explore optimal sampling, and to develop 
optimal sampling patterns for small images with 16x16 pixels.  The reconstructed images 
look reasonably good and certainly better than those generated by back-projecting the 
zero-padded Fourier matrix on the undersampled data. Overall, this project was a great 
learning experience, and I would like to study ahead and further explore the intricacies of 
the mathematics behind compressed sensing.  
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