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Introduction 
 
 Motion during MR Imaging causes two main types of artifacts generally referred to as 
Time-of-Flight  and Phase artifacts. The former arises as a result of tissue displacement 
during the quiescent period between each data sampling period and the following 
excitation RF, while the latter happens as a result of spin phase induced by motion 
through magnetic field gradients during readout. Methods have been proposed to mitigate 
these artifacts. Some methods make use of navigator echoes [1] to compensate for 
motion, while others like PROPELLER [2] oversample the center of k-space and obtain 
inherent ‘‘navigator’’ information, which permits correction for in-plane displacement 
and rotation. Variable Density Spiral (VDS) adaptive imaging [3] was proposed to obtain 
real-time images of the coronary artery based on the rejection of highly distorted real-
time low-resolution frames reconstructed from a higher density inner spiral in the k-space 
trajectory.  
 
 The idea behind both VDS-adaptive imaging and PROPELLER is sampling a small 
region in the center of k-space for each interleave of the acquisition and forming a low-
resolution almost motion-free image from that data. In VDS-adaptive imaging this low-
resolution image forms a basis for the rejection of the whole acquisition and no 
compensation scheme is proposed. In PROPELLER, techniques are used to compensate 
for the bulk motion and rotation estimated from this low-resolution image. Because 
specific trajectories like PR and Spiral are generally known to reduce flow/motion 
artifacts in the reconstructed image, this makes them a better choice for use in a motion 
compensation algorithm. In this work I propose the use of VDS trajectories and then 
applying the ideas of PROPELLER  for bulk motion  compensation. 
 
 The results shown are primary and based on a simplified simulation of a noisy randomly 
moving object. In what follows I will describe the algorithm details and the simulation 
results.  

Background 

VDS trajectory 
Data are collected in k-space in 20 interleaves, each consisting of a variable density spiral 
designed to have higher inner-spiral density and lower outer-spiral density. Figure 1 
shows two sample interleaves. The inner/outer spiral coverage ratio determines the 
resolution of the image reconstructed from the inner spiral and hence affects the accuracy 
of the compensation algorithm. The inner spiral for each interleave is designed to form an 
alias-free low-resolution  and almost motion-free (beause of the low acquisition time for 
each inner spiral) image which will serve as a base for the estimation of the translation 
and rotation of the object for that specific interleave. 



 
Figure 1. a VDS  trajectory. 

 

Bulk Rotation Correction 
  It is well known that rotation of an object in image space produces identical rotations of 
its Fourier transform in k-space, while shifts of an object in image space produce linear 
phase shifts in the k-space data. Thus, if one looks only at the magnitude of k-space data, 
the bulk rotation of an object can be assessed independent of its bulk translation. As 
stated above, there is a circle in the center of k-space that is densely measured for each 
interleave. A set of Cartesian coordinates that spans this central circle is defined as R. 
The data magnitude Mn of each interleave inside this circle is gridded onto R. Each Mn is 
then rotated by a series of angles and gridded onto R for each angle. The set of angles 
spans a user-specified range that covers the expected range of rotations. M1 will serve as a 
reference and the correlation of M1 and Mn is measured as a function of rotation angle. 
This correlation should be largest when Mn is rotated to M1. It was found empirically that 
this correlation is more robust if each datum inM1 and Mn is first multiplied by the square 
of its distance from the k-space origin; this removes the heavy weighting at the k-space 
center due to the concentration of signal energy at low spatial frequencies, and places 



more emphasis at the edges of R, where small rotations produce a larger azimuthal shift. 
The angle at which the peak of this correlation occurs is an estimate of the angle of 
rotation for the nth interleave. Once the angles are estimated for each interleave, the 
respective coordinates are rotated to match the estimated rotation of the object at the time 
of data collection. These rotated coordinates are then used in the translation correction as 
well as in the final reconstruction. 

Bulk Translation Correction 
 In this case the data are kept complex complex. Dn  is the complex data for the nth 
interleave contained within the central circle and gridded into R. If D1 and Dn form low-
resolution images d1 and dn  respectively, then the translation for each interleave can be 
found by finding the maximum value of the convolution of d1* and dn. This convolution is 
best performed by first multiplying D1* by Dn, and taking the inverse Fourier transform of 
the product. After this inverse Fourier transform is taken, the peak magnitude around a 
sinc interplolated version is found. The location of the peak is the estimated translation in 
the x and y directions, and a corresponding linear phase is removed from the collected 
data in that interleave. 
 

Final reconstruction  
 Final reconstruction uses all corrected data comprising the corrected k-space values and 
rotated trajectories. A sinc-kernel gridding on a 2X Cartesian grid with preweighting is 
performed for the final reconstruction. The preweighting function is found from a 
voronoi diagram of the stack of the corrected interleaved spirals. 
 

Methods 

VDS generation 
A variable density spiral with N=20 interleaves is used so that the motion artifacts be 
ignorable during each interleave acquisition. The inner spiral for each interleave is 
designed to give an FOV=24cm and the outer one is designed to give an FOV=2.4cm. 
This way each inner-spiral interleave gives a low-resolution alias-free image while the 
outer spirals give an alias-free image when stacked together. Resolution is assumed 1mm 
so maximum k-space radius to be covered is set to rmax=5 cm .Maximum gradient 
amplitude and maximum slew rate are set to 3.9 G/cm and 14500 G/cm/s  respectively. 
Sampling rate is set to T=4 usec. The inner spiral is set to be 1/5 of the max k-space 
coverage so images generated from the inner spirals will have a 5mm resolution. If this 
ratio is lowered we will have less inner-spiral resolution , and hence less accuracy in the 
rotation and translation estimation but less motion artifacts during the inner-spiral 
acquisition. Increasing this ratio will cause more motion artifacts during acquisition but 
more accuracy in the estimation algorithm. Since I am simulating discrete shifts per each 
interleave and unfortunately could not simulate the motion artifact during the readout  I 
won’t test for the effects of varying the inner/outer spiral coverage ratio and heuristically 
chose it to be 1/5, But it is interesting to test the effect of this parameter on the 
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performance with real data. Figure 1 shows two generated interleaves. With these 
constraints each interleave will have an acquisition time of 16.1ms ( 4026 samples ). The 
portion of acquisition time spent for the inner spiral turns out to be 7.2ms (1812 samples). 
 
 I use a modified version of Brian Hargreaves’ code [4] to generate the VDS with the 
specified parameters. The codes are included in the appendix : 
 
genvds.m : uses vds.m to generate the trajectory 
vds.m       : Brian’s code  
q2r21.m  : Modified version of Brian’s code. Instead of a polynomial FOV I modified the    code to 
generate a stepwise FOV. FOV=24 when r<1 and FOV=2.4 for 1<r<5. 

Simulating the object 
For each interleave I produce the object consisting of ovals,circles,squares,stripes and 
then apply a uniform random shift of -2cm to 2 cm and a random rotation of –pi/4 to pi/4 
.Figure 2  is the 256x256 true static image when built on a Cartesian grid. White 
Gaussian noise is then added to the k-space data generating SNRs of 10,20,30,40 dB. 
 

 
Figure 2.Original static image.The outer circle is the FOV and is not included in the original 

image(just added for the picture) 

 
The code for this part is found in the appendix : 
 



Buildmovingobj.m : uses buildobj.m to produce  the moving object for interleaves. Computes k-space 
values on the trajectories. 
Buildobj.m              :  code to generate the static object. 
Main.m     : the part for adding noise. 

Gridding 
Gridding is an essential part of the algorithm. A 2X Cartesian grid ( 512x512 ) is used to 
reduce the aliasing artifact in gridding. The kernel used is a sinc covering 11 grid samples 
(L=-5:5) windowed by a hamming function. The preweighting density compensation 
function is computed using the areas of the voronoi diagram cells. Because the specific 
code used for area computation generates some problems at the spiral edges I use a 
simple code for fixing that, assuming the area related to the edge of the spiral is a 
continuation if the trend in the previous turn. Here are the attached associated code : 
 
Voronoidens.m : computes the area of a trajectory 
Vorodensmulti.m : uses the above to compute for all interleaves 
Fixaa.m   : fixed the edge problem for one interleave 
Fixa.m  : fixes the problem for all interleaves stacked together. 

Bulk rotation correction  
As stated in the background section the inner spiral data for each interleave is gridded 
into a Cartesian grid R. The grid is chosen to be a 2X grid on the inner circle with radius 
0.1. So the grid should be 512/5*512/5. The nearest power of two to 512/5 is chosen for 
the grid size hence the grid will be 128x128. Each inner spiral will be gridded onto R as 
well as its rotations for a set of angles. The angle giving the highest correlation should be 
chosen. This algorithm is not that much computationally efficient but is chosen for sake 
of simplicity. It takes around 15 minutes to estimate the rotation angle for all the 
interleaves on a p4 machine to a 0.001 rad precision. To reach a 0.001 rad precision the 
search for the rotation angle is done in three iterations. First a search for theta=[-
pi/4:0.04:(0.04+pi/4)] is done and the angle theta is found. Then a finer resolution search 
for [theta-0.1:0.01:theta+0.1] is performed and theta is refined. The third iteration will be 
for [theta-0.02:0.001:theta+0.02]. After theta is estimated the whole interleave spiral will 
be rotated by that angle. The code for this part is attached: 
 
Fixrot.m : estimates the rotation angles and fixes the trajectories 

Bulk translation correction 
The fixed trajectories from the previous stage will be used afterwards. As explained in 
the background section each inner-spiral interleave data will be again gridded onto a 
Cartesian grid and the convolution with the first image will be computed via Fourier 
transform. The peak of this convolution gives the estimated shift in the x and y direction. 
Since the inner-spiral images will be of 5mm resolution the estimated shifts will be 
limited to this quantization. In a try to overcome this issue the 2D correlation function is 
sinc interpolated around the peak by a factor of 20 and the peak is refined. The code is 
attached : 
 
Fixtrans.m : fixes the shifts in the x and y directions. 
 



Final reconstruction  
The fixed data for all interleaves is stacked upon each other and then gridded and 
reconstructed. The density estimation should be done for the stacked interleaves. 
 
Main.m : The main code wrapping everything together. 

Results 
 
On the next pages you can find the resulting reconstructed images. They are 512x512 
because of the 2X grid but just the inner 256x256 pixels containing the FOV is shown. 
Compensated images are the ones with the above algorithm applied. Static images are the 
static images reconstructed by the same gridding algorithm and is the ideal to be achieved 
by the compensation algorithm and so will serve as a baseline for comparison. The 
uncompensated image is the moving image with no motion compensation applied. 
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Discussion  
The compensation algorithm seems to work well when SNR is as low as 20bB. At 
SNR=10dB the image is so noisy that  the compensation can not perform a good job 
although the image is still better than the uncompensated image.  
In all the images ( immediately seen in the SNR=40dB case ) the compensated image 
shows some strange artifact which is like having some ‘texture’ in the background ! I 
think this may be due to the abnormal density variation in the stacked interleave of spirals 
after the rotation compensation. Figure 3,4 shows the stacked original interleaves before 
and after rotation compensation. Because the interleaves make random rotations after the 
motion compensation the final stacked trajectory is not uniform on the outer ( and inner ) 
spiral. Since the outer spiral was designed to give an FOV=24 when stacked together like 
in figure 3  this nonuniformity (figure 4) causes some aliasing in the spatial frequencies 
that the density is lower than expected. This is further justified by closely looking at the 
compensated image and seeing some vague edges of other parts in that background 
artifact.  
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Figure 3.ALL interleaves before rotation compensation 
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Figure 4. ALL interleaves after rotation compensation. 

 
 To wrap up, the bulk motion compensation scheme proposed works almost well for the 
simulated discrete movements of the object. However, the algorithm performance should 
be tested on real data to see the effects of non-rigid motion,flow,off-resonance and most 
importantly the spin phase effects during each readout. In the case of spin-phase artifacts 
lowering the ratio of inner/outer spiral coverage and increasing the number of interleaves 
to lower the acquisition time maybe useful. Also if the noise variance or distortion was 
not the same for each interleave we can use a weighting to vary the contribution of the 
interleaves’ data to the final reconstruction.  
 
 
 
 
 
 
 
 
 
 
 
 
 



References 
[1] Ehman R, Felmlee J. Adaptive technique for high-definition MR imaging of moving 
structures. Radiology 198;173:255–263. 
 
[2] J Pipe, "Motion Correction with PROPELLER-MRI: Application to Head Motion and 
Free-Breathing Cardiac Imaging" Magn. Reson. Med., 42:963-969, 1999. 
 
[3] MS Sussman, JA Stainsby, N Robert, N Merchant, GA Wright, "Variable-Density 
Adaptive Imaging for High-Resolution Coronary Artery MRI" Magn. Reson. Med. 
48:753-764, 2002. 
 
[4] http://www-mrsrl.stanford.edu/~brian/vdspiral/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix : MATLAB codes 
 

MAIN.m 
% generate the variable density spiral ; 
k=genvds; 
%generate the k-space data for the moving object 
movingtx=buildmovingobj(k,pi/4,20); 
%generate a static object for comparison 
statictx=buildmovingobj(k,0,0); 
%add noise 
 
%10db 
movingtx10db=movingtx+sqrt(0.1*mean(mean(abs(movingtx).^2)))*randn(4026,20); 
statictx10db=statictx+sqrt(0.1*mean(mean(abs(statictx).^2)))*randn(4026,20); 
%20db 
movingtx20db=movingtx+sqrt(0.01*mean(mean(abs(movingtx).^2)))*randn(4026,20); 
statictx20db=statictx+sqrt(0.01*mean(mean(abs(statictx).^2)))*randn(4026,20); 
%30db 
movingtx30db=movingtx+sqrt(0.001*mean(mean(abs(movingtx).^2)))*randn(4026,20); 
statictx30db=statictx+sqrt(0.001*mean(mean(abs(statictx).^2)))*randn(4026,20); 
%40db 
movingtx40db=movingtx+sqrt(0.0001*mean(mean(abs(movingtx).^2)))*randn(4026,20); 
statictx40db=statictx+sqrt(0.0001*mean(mean(abs(statictx).^2)))*randn(4026,20); 
fix the rotation  
 
%compute the voronoi areas for all interleaves 
area=vorodensmulti(k); 
%fix the rotation  
k_fixed10db=fixrot(movingtx10db,k,area); 
k_fixed20db=fixrot(movingtx20db,k,area); 
k_fixed30db=fixrot(movingtx30db,k,area); 
k_fixed40db=fixrot(movingtx40db,k,area); 
 
% fix the translation  
tx_fixed10db=fixtrans(movingtx10db,k_fixed10db,area); 
tx_fixed20db=fixtrans(movingtx20db,k_fixed20db,area); 
tx_fixed30db=fixtrans(movingtx30db,k_fixed30db,area); 
tx_fixed40db=fixtrans(movingtx40db,k_fixed40db,area); 
 
%reconstruct the final images 
 
%compute the stacked interleaves weighting function 
a=voronoidens(k(:)); 
a=fixa(a); 
a_10db=voronoidens(k_fixed10db(:)); 
a_10db=fixa(a_10db); 
a_20db=voronoidens(k_fixed20db(:)); 
a_20db=fixa(a_20db); 
a_30db=voronoidens(k_fixed30db(:)); 
a_30db=fixa(a_30db); 
a_40db=voronoidens(k_fixed40db(:)); 
a_40db=fixa(a_40db); 
 
%motion corrected image 
correctedim_10db=ift(grid(tx_fixed10db(:).*a_10db,k_fixed10db,512,5)); 
correctedim_20db=ift(grid(tx_fixed20db(:).*a_20db,k_fixed20db,512,5)); 
correctedim_30db=ift(grid(tx_fixed30db(:).*a_30db,k_fixed30db,512,5)); 
correctedim_40db=ift(grid(tx_fixed40db(:).*a_40db,k_fixed40db,512,5)); 
%moving image if no compensation  
uncorrectedim_10db=ift(grid(movingtx10db(:).*a,k,512,5)); 
uncorrectedim_20db=ift(grid(movingtx20db(:).*a,k,512,5)); 
uncorrectedim_30db=ift(grid(movingtx30db(:).*a,k,512,5)); 
 
uncorrectedim_40db=ift(grid(movingtx40db(:).*a,k,512,5)); 
%reconstructed static image for baseline comparison 
staticim_10db=ift(grid(statictx10db(:).*a,k,512,5)); 
staticim_20db=ift(grid(statictx20db(:).*a,k,512,5)); 



staticim_30db=ift(grid(statictx30db(:).*a,k,512,5)); 
staticim_40db=ift(grid(statictx40db(:).*a,k,512,5)); 
 
%display the images 
figure(1); 
dispimage(abs(correctedim_40db(128:383,128:383))); 
title('correctedim_40db'); 
 
figure(2); 
dispimage(abs(staticim_40db(128:383,128:383))); 
title('staticim_40db'); 
 
figure(3); 
dispimage(abs(uncorrectedim_40db(128:383,128:383))); 
title('uncorrectedim_40db'); 
 
figure(4); 
dispimage(abs(correctedim_30db(128:383,128:383))); 
title('correctedim_30db'); 
 
figure(5); 
dispimage(abs(staticim_30db(128:383,128:383))); 
title('staticim_30db'); 
 
figure(6); 
dispimage(abs(uncorrectedim_30db(128:383,128:383))); 
title('uncorrectedim_30db'); 
 
figure(7); 
dispimage(abs(correctedim_20db(128:383,128:383))); 
title('correctedim_20db'); 
 
figure(8); 
dispimage(abs(staticim_20db(128:383,128:383))); 
title('staticim_20db'); 
 
figure(9); 
dispimage(abs(uncorrectedim_20db(128:383,128:383))); 
title('uncorrectedim_20db'); 
 
figure(10); 
dispimage(abs(correctedim_10db(128:383,128:383))); 
title('correctedim_10db'); 
 
figure(11); 
dispimage(abs(staticim_10db(128:383,128:383))); 
title('staticim_10db'); 
 
figure(12); 
dispimage(abs(uncorrectedim_10db(128:383,128:383))); 
title('uncorrectedim_10db'); 
 
 

GENVDS.m 
function [k]=genvds; 
clear kk; 
fov=24;  
N=20;           % # of interleaves 
smax=14500;     % max slew rate 
gmax=3.9;       % max gradient amplitude 
T=0.000004;     % sampling time 
rmax=5;         % max k-space raduis to be covered ( resolution = 1mm )   
 
%generate one interleave 
[k,g,s,time,r,theta] = vds(smax,gmax,T,N,fov,0,0,rmax); 
r=abs(k); 
theta=angle(k); 
 



%generate all interleaves  
for i=0:(N-1), 
     kk(:,i+1)=r'.*exp(j*(theta-i*2*pi/N))'; 
end 
 
%downsample the inner spiral ( will not violate G,S limitations ) 
k=[kk(1:20:36200,:); kk(36201:end,:)]; 
 
%scale to -0.5<k<0.5 
k=k/10; 
  

VDS.m 
% 
% function [k,g,s,time,r,theta] = vds(smax,gmax,T,N,F0,F1,F2,rmax) 
% 
% 
% VARIABLE DENSITY SPIRAL GENERATION: 
% ---------------------------------- 
% 
% Function generates variable density spiral which traces 
% out the trajectory 
%      
%   k(t) = r(t) exp(i*q(t)),   [1] 
% 
% Where q is the same as theta... 
%  r and q are chosen to satisfy: 
% 
%  1) Maximum gradient amplitudes and slew rates. 
%  2) Maximum gradient due to FOV, where FOV can 
%     vary with k-space radius r, as 
% 
%   FOV(r) = F0 + F1*r + F2*r*r   [2] 
% 
% 
% INPUTS: 
% ------- 
% smax = maximum slew rate G/cm/s 
% gmax = maximum gradient G/cm (limited by Gmax or FOV) 
% T = sampling period (s) for gradient AND acquisition. 
% N = number of interleaves. 
% F0,F1,F2 = FOV coefficients with respect to r - see above. 
% rmax= value of k-space radius at which to stop (cm^-1). 
%  rmax = 1/(2*resolution); 
% 
% 
% OUTPUTS: 
% -------- 
% k = k-space trajectory (kx+iky) in cm-1. 
% g = gradient waveform (Gx+iGy) in G/cm. 
% s = derivative of g (Sx+iSy) in G/cm/s. 
% time = time points corresponding to above (s). 
% r = k-space radius vs time (used to design spiral) 
% theta = atan2(ky,kx) = k-space angle vs time. 
% 
% 
% METHODS: 
% -------- 
% Let r1 and r2 be the first derivatives of r in [1].  
% Let q1 and q2 be the first derivatives of theta in [1].  
% Also, r0 = r, and q0 = theta - sometimes both are used. 
% F = F(r) defined by F0,F1,F2. 
% 
% Differentiating [1], we can get G = a(r0,r1,q0,q1,F)  
% and differentiating again, we get S = b(r0,r1,r2,q0,q1,q2,F) 
% 
% (functions a() and b() are reasonably easy to obtain.) 
% 
% FOV limits put a constraint between r and  



% 
%  dr/dq = N/(2*pi*F)    [3]  
% 
% We can use [3] and the chain rule to give  
% 
%  q1 = 2*pi*F/N * r1    [4] 
% 
% and 
% 
%  q2 = 2*pi/N*dF/dr*r1^2 + 2*pi*F/N*r2  [5] 
% 
% 
% 
% Now using [4] and [5], we can substitute for q1 and q2 
% in functions a() and b(), giving 
% 
%  G = c(r0,r1,F) 
% and  S = d(r0,r1,r2,F,dF/dr) 
% 
% 
% Using the fact that the spiral should be either limited 
% by amplitude (Gradient or FOV limit) or slew rate, we can 
% solve  
%  |c(r0,r1,F)| = |Gmax|      [6] 
% 
% analytically for r1, or 
%  
%    |d(r0,r1,r2,F,dF/dr)| = |Smax|    [7] 
% 
% analytically for r2. 
% 
% [7] is a quadratic equation in r2.  The smaller of the  
% roots is taken, and the real part of the root is used to 
% avoid possible numeric errors - the roots should be real 
% always. 
% 
% The choice of whether or not to use [6] or [7], and the 
% solving for r2 or r1 is done by q2r21.m. 
% 
% Once the second derivative of theta(q) or r is obtained, 
% it can be integrated to give q1 and r1, and then integrated 
% again to give q and r.  The gradient waveforms follow from 
% q and r.   
% 
% Brian Hargreaves -- Sept 2000. 
% 
% See Brian's journal, Vol 6, P.24. 
% 
% 
% See also:  vds2.m 
% 
 
% =============== CVS Log Messages ========================== 
% $Log: vds.m,v $ 
% Revision 1.3  2002/11/18 05:36:02  brian 
% Rounds lengths to a multiple of 4 to avoid 
% frame size issues later on. 
%  
% Revision 1.2  2002/11/18 05:32:19  brian 
% minor edits 
%  
% Revision 1.1  2002/03/28 01:03:20  bah 
% Added to CVS 
%  
% 
% =========================================================== 
 
function [k,g,s,time,r,theta] = vds(smax,gmax,T,N,F0,F1,F2,rmax) 
 
disp('vds.m'); 
gamma = 4258; 



 
oversamp = 8;  % Keep this even. 
To = T/oversamp; % To is the period with oversampling. 
 
 
 
q0 = 0;  
q1 = 0; 
theta = zeros(1,10000); 
r = zeros(1,10000); 
r0 = 0; 
r1 = 0; 
 
time = zeros(1,10000); 
t = 0; 
count = 1; 
 
theta = zeros(1,1000000); 
r = zeros(1,1000000); 
time = zeros(1,1000000); 
 
while r0 < rmax 
 [q2,r2] = q2r21(smax,gmax,r0,r1,To,T,N,[F0,F1,F2]); 
 
 % Integrate for r, r', theta and theta'   
 q1 = q1 + q2*To; 
 
 q0 = q0 + q1*To; 
  t = t + To; 
 
 r1 = r1 + r2*To; 
 r0 = r0 + r1*To; 
 
 % Store. 
 count = count+1;  
 theta(count) = q0; 
 r(count) = r0; 
 time(count) = t; 
 
 if (rem(count,100)==0) 
  tt = sprintf('%d points, |k|=%f',count,r0); 
  disp(tt); 
 end; 
end; 
 
r = r(oversamp/2:oversamp:count); 
theta = theta(oversamp/2:oversamp:count); 
time = time(oversamp/2:oversamp:count); 
 
% Keep the length a multiple of 4, to save pain...! 
% 
ltheta = 4*floor(length(theta)/4); 
r=r(1:ltheta); 
theta=theta(1:ltheta); 
time=time(1:ltheta); 
 
k = r.*exp(i*theta); 
 
g = 1/gamma*([k 0]-[0 k])/T; 
g = g(1:length(k)); 
 
s = ([g 0]-[0 g])/T; 
s = s(1:length(k)); 
 

q2r21.m 
 
% 
%   function [q2,r2] = q2r2(smax,gmax,r,r1,T,Ts,N,F) 



% 
% VARIABLE DENSITY SPIRAL DESIGN ITERATION 
% ---------------------------------------- 
% Calculates the second derivative of r and q (theta), 
% the slew-limited or FOV-limited 
% r(t) and q(t) waveforms such that  
% 
%  k(t) = r(t) exp(i*q(t)) 
% 
% Where the FOV is a function of k-space radius (r) 
% 
% FOV = F(1) + F(2)*r + F(3)*r*r  + ... ; 
% 
% F(1) in cm. 
% F(2) in cm^2. 
% F(3) in cm^3. 
% . 
% . 
% . 
% 
% The method used is described in vds.m 
%  
% INPUT: 
% ----- 
% smax   = Maximum slew rate in G/cm/s. 
% gmax  = Maximum gradient amplitdue in G. 
% r = Current value of r. 
% r1  = Current value of r', first derivative of r wrt time. 
% T = Gradient sample rate. 
% Ts = Data sampling rate. 
% N = Number of spiral interleaves. 
% F is described above. 
% 
 
 
% =============== CVS Log Messages ========================== 
% This file is maintained in CVS version control. 
% 
% $Log: q2r21.m,v $ 
% Revision 1.1  2002/03/28 01:03:20  bah 
% Added to CVS 
%  
% 
% =========================================================== 
 
 
  
function [q2,r2] = q2r2(smax,gmax,r,r1,T,Ts,N,Fcoeff) 
 
gamma = 4258;   % Hz/G 
 
F = 0;  % FOV function value for this r. 
dFdr = 0;  % dFOV/dr for this value of r. 
 
 
 
% for rind = 1:length(Fcoeff) 
%  F = F+Fcoeff(rind)*r^(rind-1); 
%  if (rind>1) 
%   dFdr = dFdr + (rind-1)*Fcoeff(rind) * r^(rind-2); 
%  end; 
% end; 
 
 
% this line modifies the desired trajectory FOV to be simply a step-wise function rather 
than a polynomial 
if r>1, F=24; else, F=20*24; end 
 
 
 
 



 
GmaxFOV = 1/gamma /F/Ts;  % FOV limit on G 
Gmax = min(GmaxFOV,gmax); % 
 
maxr1 = sqrt((gamma*Gmax)^2 / (1+(2*pi*F*r/N)^2));   
 
 
if (r1 > maxr1)    
   % Grad amplitude limited.  Here we 
 
   % just run r upward as much as we can without 
   % going over the max gradient. 
 r2 = (maxr1-r1)/T;  
 %tt = sprintf('Grad-limited r=%5.2f, r1=%f',r,r1); 
 %disp(tt); 
 
else 
 
 twopiFoN = 2*pi*F/N; 
 twopiFoN2 = twopiFoN^2; 
 
 % A,B,C are coefficents of the equation which equates 
 %  the slew rate calculated from r,r1,r2 with the 
 % maximum gradient slew rate. 
 % 
 % A*r2*r2 + B*r2 + C  =  0  
 % 
 % A,B,C are in terms of F,dF/dr,r,r1, N and smax. 
 % 
 
 
 A = 1+twopiFoN2*r*r; 
 B = 2*twopiFoN2*r*r1*r1 + 2*twopiFoN2/F*dFdr*r*r*r1*r1; 
 C = twopiFoN2^2*r*r*r1^4 + 4*twopiFoN2*r1^4 + (2*pi/N*dFdr)^2*r*r*r1^4 + 
4*twopiFoN2/F*dFdr*r*r1^4 - (gamma)^2*smax^2; 
 
 
 [rts] = qdf(A,B,C); % qdf = Quadratic Formula Solution. 
 r2 = real(rts(1)); % Use bigger root.  The justification 
    % for this is not entirely clear, but 
    % in practice it seems to work, and  
    % does NOT work with the other root. 
 
 
 
 
 % Calculate resulting slew rate and print an error  
 % message if it is too large. 
  
 slew = 1/gamma*(r2-twopiFoN2*r*r1^2 + i*twopiFoN*(2*r1^2 + r*r2 + dFdr/F*r*r1^2)); 
 %tt = sprintf('Slew-limited r=%5.2d  SR=%f G/cm/s',r,abs(slew)); 
 %disp(tt); 
 sr = abs(slew)/smax; 
 
 if (abs(slew)/smax > 1.01) 
  tt = sprintf('Slew violation, slew = %d, smax = %d, sr=%f, r=%f, 
r1=%f',round(abs(slew)),round(smax),sr,r,r1); 
  disp(tt); 
 end; 
 
end; 
 
 
% Calculate q2 from other pararmeters. 
 
q2 = 2*pi/N*dFdr*r1^2 + 2*pi*F/N*r2; 
 

BUILDMOVINGOBJ.M 
function [tx]=buildmovingobj(k,thetarange,shiftrange); 



N=20; % # of interleaves 
for i=1:N, 
    i 
    j=sqrt(-1); 
    kx=real(k(:,i)); 
    ky=imag(k(:,i)); 
    kr=abs(k(:,i)); 
    phi=angle(k(:,i)); 
     
    %random rotation angle -pi/4 > pi/4 
    rot=(rand(1)-0.5).*2*thetarange; 
    if i==1,rot=0; end 
    %generate the rotation 
    t=buildobj(kr.*exp(j*(phi-rot))); 
    % random shifts of -20>20 pixels -2>2 cm 
    shiftx=2*shiftrange*(rand(1)-0.5); 
    shifty=2*shiftrange*(rand(1)-0.5); 
    %generate the shifts 
    t=t.*exp(-j*2*pi*kx*shiftx-j*2*pi*ky*shifty); 
    tx(:,i)=t; 
end 

 

BUILDOBJ.M 
 
function [tx]=buildobj(k); 
%krange = (-128:127)/256; 
%[ky kx] = meshgrid(krange,krange); 
kx=real(k); 
ky=imag(k); 
kr = sqrt(kx.^2 + ky.^2); 
tx_circ = 240*240*jinc(240*kr); % FTx of circle with diameter 24cm(all FOV) 
  
% Make some Squares on the outside 
 tx_grid = 0; 
 
 tx_grid = tx_grid + rectangle_fourier(kx,ky,40,40,0,75); 
 tx_grid = tx_grid + rectangle_fourier(kx,ky,40,40,-75,0); 
 tx_grid = tx_grid + rectangle_fourier(kx,ky,20,20,0,0); 
 tx_grid = tx_grid + rectangle_fourier(kx,ky,40,40,0,-75); 
 tx_grid = tx_grid + rectangle_fourier(kx,ky,40,40,75,0); 
 tx_grid = tx_grid + rectangle_fourier(kx,ky,40,40,43,43); 
 tx_grid = tx_grid + rectangle_fourier(kx,ky,40,40,43,-43); 
 tx_grid = tx_grid + rectangle_fourier(kx,ky,40,40,-43,-43); 
 
 tx_grid = tx_grid/2; 
 
% Make some Stripes that have high spatial resolution 
tx_stripes = 0; 
start = -65; 
for a=1:8; 
start = start + a/2; 
tx_stripes = tx_stripes + rectangle_fourier(kx,ky,a,64,start,32); 
start = start + 3*a/2; 
end 
% Make a big oval (for no real reason) 
tx_oval = ellipse_fourier(kx,ky,60,100,40,0); 
% Make a thin rectangle 
tx_pen = rectangle_fourier(kx,ky,2,100,-30,-62); 
% put it all together 
tx = (tx_pen+tx_grid + tx_stripes + tx_oval); 
%tx = (tx_pen+tx_circ/3+tx_grid + tx_stripes + tx_oval); 
%im = ift(tx); 
%dispimage(abs(im)); 
 

VORODENSMULTI.M 
%compute voronoi areas for multiple interleaves 



function area=vorodensmulti(k), 
N=20; 
for i=1:N, 
    i 
    a=voronoidens(k(:,i)); 
    a=fixaa(a); 
    area(:,i)=a; 
end 
 

VORONOIDENS.M 
 
function area = voronoidens(k); 
% 
% function area = voronoidens(k); 
% 
% input:  k = kx + i ky is the  k-space trajectory 
% output: area of cells for each point  
%           (if point doesn't have neighbors the area is NaN) 
 
kx = real(k); 
ky = imag(k); 
 
[row,column] = size(kx); 
kxy = [kx(:),ky(:)]; 
% returns vertices and cells of voronoi diagram 
[V,C] = voronoin(kxy);  
area = []; 
for j = 1:length(kxy) 
  j 
  x = V(C{j},1); y = V(C{j},2); lxy = length(x); 
  A = abs(sum( 0.5*(x([2:lxy 1]) - x(:)).*(y([2:lxy 1]) + y(:)))); 
  area = [area A]; 
end 
area = reshape(area,row,column); 
 
% this is to fix the area output from the voronoi diagram and remove 
the  
% problem in the edge of the spiral. This is to fix all interleaves 
stacked upon  
% each other. 

FIXA.M 
 
 
function b=fixa(a); 
x=3850:4026; 
y=2*3850-4026-1:3850-1; 
a(x)=a(y)+a(x(1))-a(y(1)); 
for i=1:19, 
x=x+4026; 
y=y+4026; 
a(x)=a(y)+a(x(1))-a(y(1)); 
end 
b=a; 
 

FIXAA.M 
% this is to fix the area output from the voronoi diagram and remove the  
% problem in the edge of the spiral. 
function b=fixaa(a) 
a(3451:4026)=a(3451-(4026-3450):3450)+a(3450)-a(2*3450-4026); 
b=a; 



 
 

GRID.M 
function m = grid(d,k,n,L) 
 
%     d -- k-space data 
%     k -- k-trajectory, scaled -0.5 to 0.5 
%     n -- image size 
%     L -- number of cartesian samples falling in the kernel 
 
% convert to single column 
d = d(:); 
k = k(:); 
 
% cconvert k-space samples to matrix indices 
nx = (n/2+1) + n*real(k); 
ny = (n/2+1) + n*imag(k); 
 
% zero out output array 
m = zeros(n,n); 
 
% loop over samples in kernel 
for lx = -L:L, 
  for ly = -L:L, 
 
    % find nearest samples 
    nxt = round(nx+lx); 
    nyt = round(ny+ly); 
 
    % compute weighting for triangular kernel 
    kwx = sinc(((nx-nxt)/2)).*(0.54-0.46*cos(2*pi*(nx-nxt-L)/(2*L))); 
    kwy = sinc(((ny-nyt)/2)).*(0.54-0.46*cos(2*pi*(ny-nyt-L)/(2*L))); 
    kwx(find(abs(nx-nxt)>L))=0; 
    kwy(find(abs(ny-nyt)>L))=0; 
     
    % map samples outside the matrix to the edges 
    nxt = max(nxt,1); nxt = min(nxt,n); 
    nyt = max(nyt,1); nyt = min(nyt,n); 
 
    % use sparse matrix to turn k-space trajectory into 2D matrix 
    m = m+sparse(nxt,nyt,d.*kwx.*kwy,n,n); 
  end; 
end; 
 
% zero out edge samples, since these may be due to samples outside 
% the matrix 
m(:,1) = 0; m(:,n) = 0; 
m(1,:) = 0; m(n,:) = 0; 
 

FIXROT.M 
 
% fixes bulk rotation from inner spiral data 
function [kout]=fixrot(tx,kk,area); 
N=20; 
krange = (-64:63)/128/5; 
[ky kx] = meshgrid(krange,krange); 
kr_grid = kx.^2 + ky.^2; 
bigr=find(kr_grid>0.01); 
for i=1:N, 
    i 
    %select inner spiral data 
    k=kk(1:1812,i); 
    t=tx(1:1812,i); 
    a=area(1:1812,i); 
    %grid i'th inner spiral interleave to a 64x64 cartesian grid 
    tmp=grid(abs(t).*a,5*k,128,5); 



    %set outside circle data to zero  
    tmp(bigr)=0; 
    %m is the gridded k-space image from ith interleave of the inner spiral 
    m(:,:,i)=tmp; 
end 
% now search for angle 
for i=1:N, 
    i 
    k=kk(1:1812,i); 
    t=tx(1:1812,i); 
    a=area(1:1812,i); 
    kr=abs(k); 
    phi=angle(k); 
    j=sqrt(-1); 
    sigma=[]; 
    %first interation search  
    for th=-pi/4:0.04:(0.04+pi/4), 
        k_rotated=kr.*exp(j*(phi-th)); 
        tmp=kr_grid.*grid(abs(t).*a,5*k_rotated,128,5); 
        tmp(bigr)=0; 
        m_rot=tmp; 
        %sigma is the correlation function  
        sigma(end+1)=sum(sum(m_rot.*m(:,:,1).*kr_grid)); 
    end 
    [tmp,ind]=max(sigma); 
    th=[-pi/4:0.04:(0.04+pi/4)]; 
    theta=th(ind) 
    sigma=[]; 
    %second iteration finer search 
    for th=theta-0.1:0.01:theta+0.1, 
        k_rotated=kr.*exp(j*(phi-th)); 
 
        tmp=kr_grid.*grid(abs(t).*a,5*k_rotated,128,5); 
        tmp(bigr)=0; 
        m_rot=tmp; 
        sigma(end+1)=sum(sum(m_rot.*m(:,:,1).*kr_grid)); 
    end 
    [tmp,ind]=max(sigma); 
    th=[theta-0.1:0.01:theta+0.1]; 
    theta=th(ind) 
    sigma=[]; 
    % third iteration finest search with 0.001 precision 
    for th=theta-0.02:0.001:theta+0.02, 
        k_rotated=kr.*exp(j*(phi-th)); 
        tmp=kr_grid.*grid(abs(t).*a,5*k_rotated,128,5); 
        tmp(bigr)=0; 
        m_rot=tmp; 
        sigma(end+1)=sum(sum(m_rot.*m(:,:,1).*kr_grid)); 
    end 
    [tmp,ind]=max(sigma); 
    th=[theta-0.02:0.001:theta+0.02]; 
    theta=th(ind) 
    %update the k-space trajectory for this interleave using estimated rotation  
    kout(:,i)=abs(kk(:,i)).*exp(j*(angle(kk(:,i))-theta)); 
end 
         
               

FIXTRANS.M 
 
% fixes the translation artifact 
function [txout]=fixtrans(tx,kk,area); 
N=20; 
%range for inner spiral k-space data 
krange = (-64:63)/128/5; 
[ky kx] = meshgrid(krange,krange); 
kr_grid = kx.^2 + ky.^2; 
bigr=find(kr_grid>0.01); 
% generate gridded data 



for i=1:N, 
    i 
    k=kk(1:1812,i); 
    t=tx(1:1812,i); 
    a=area(1:1812,i); 
    tmp=grid(t.*a,5*k,128,5); 
    tmp(bigr)=0; 
    m(:,:,i)=tmp; 
end 
j=sqrt(-1); 
% find and correct the shifts 
for i=1:N, 
    % find the convolution  
    d=ift(m(:,:,i).*conj(m(:,:,1))); 
    d=abs(d); 
    % find the peak 
    [a,b]=ind2sub(size(d),find(d==max(max(d)))); 
    % refine the peak by sinc interpolation around the peak 
    dx=d(a-5:a+5,b); 
    dy=d(a,b-5:b+5); 
    tmp=interp(dx,20); 
    [aa,ind]=max(tmp); 
    shiftx=a-65+((ind-1)/20)-5 % this is the shift in x direction 
    tmp=interp(dy,20); 
    [bb,ind]=max(tmp); 
    shifty=b-65+((ind-1)/20)-5; % this is the shift in y direction  
    % subtract the liear phase from the k-space data 
    kx=real(kk(:,i));ky=imag(kk(:,i)); 
    txout(:,i)=tx(:,i).*exp(5*j*2*pi*shiftx*kx).*exp(5*j*2*pi*shifty*ky); 
end 
     
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 


