
SINe Refocusing Pulses Given the severe nonlinearity of the Bloch equa-

tions for RF excitation with flip angles greater than 90° (see Section 3.1), it is

somewhat surprising that SINC pulses can make effective refocusing pulses.

(Refocusing pulses are normally played at a flip angle of 180°, but reduced

flip angles, e.g., l30°, are sometimes used when SAR is a limiting factor, as

discussed in Section 3.3.)

One reason that SINC pulses can be effectively used for refocusing pulses

is that they are typically played with accompanying crusher gradients (see

Section 10.2). It can be shown that the slice profile of a refocusing pulse

with crushers is equal to the square of the small flip angle profile, which

can be demonstrated with SLR analysis (Section 2.3). (Recall that the profile

obtained at small flip angles is well approximated by the Fourier transform

of the RF envelope and therefore does not contain nonlinearity introduced by

the Bloch equations.) Figure 2.4 shows the responses of a SINC pulse with a

120° flip angle played as an excitation pulse and as a refocusing pulse (with

crushers). Both responses were calculated with forward SLR transforms. The

lack of side lobes in the refocusing pulse profile is a general result for this

pulse and is valid even at a flip angle of 180°, as long as cr~shers acco.mpany

the pulse. Generally the effect of squaring any slice pro~le IS to make.lt more

sharply peaked, to suppress its side lobes, and to narrow It. Theref01:e, I.fSINC

pulses that are identical (except in flip angle) are used for both eXCitation and

refocusing in a spin echo pulse sequence, the amplitude of the slice-selection

gradient of the refocusing SINC pulse is reduced by 25-40% to counteract the

slice narrowing effect.

Table 2.2 gives some quantitative examples of the slice narrowing. When

played as a small flip angle pulse (e = 30°), the values are nearly equal to

unity, indicating that Eq. (2.3) holds to an excellent approximation. At e =
90° the approximation is less accurate. When the SINC pulses are played as

refocusing pulses, with crushers, the bandwidth is substantially lower, so that

the amplitude of the slice-selection gradient must be reduced to obtain the

expected slice thickness.

TABLE 2.2

RF Bandwidth([, as Measured by the FWHM of the Slice Prafi Ie,

for Two SINC Pulses Apodized with a Hamming Window

NL = NR = N = 2
NL = NR = N = 4

0.67

0.70

1.0 I

1.00

1.09

1.02

{/ In units of 1//0. See Eq. (2.6).

h Refocus (with crushers).
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. Gi~en a slice-select~ve RF pulse and the initial orientation of the mag-

netlz~tlOn vector, the slice profile can be determined by solving the Bloch

equatl?nS for Mx, My, and Mz (e.g., see Eq. 3.13 in Chapter 3). Although

numencal methods are usually required, the process is straightforward and

deterministic. The inverse problem, however, is much more difficult. Given

the desired slice profile and the initial condition of the magnetization, what

RF pulse should be applied? For small flip angles, the shape of an excitation

pulse can be determined (to an excellent approximation) by inverse Fourier

transformation of the slice profile (Section 3.1). This procedure begins to fail

f?r pU.lses with larger flip angles (i.e., over the range 30-90°) due to the non-

Im~anty.ofthe Bloch equations. In those cases, the RF pulse can be determined

by IteratIve numerical optimization methods (for example, using optimal con-

trol ~heory), but this process is time-consuming and has limited flexibility for

making trade-offs among pulse parameters. A summary of iterative and other

RF pulse de.sign methods can be found in Warren and Silver (1988, chap. 4).

The Shmnar-Le Roux (SLR) algorithm (Le Roux 1986; Shinnar, Eleff,

et al. 1989; Shinnar, Bolinger, et al. 1989a, 1989b; Shinnar and Leigh

1989; P~uly et al. 1991) allows this inverse problem to be solved directly

and e.fficle~tly, without iteration. Characteristics such as RF bandwidth, pulse

duration, flip angle, percent ripple in the passband, and percent ripple in the

sto~band are specified, and the algorithm returns the exact RF pulse through a

stralghtforward computational process. Moreover, the SLR algorithm allows

~hepulse designer to make trade-offs among these parameters before the pulse

IS.even generated. Because of these advantages, the SLR algorithm has found

Widespread use for nonadiabatic pulse design in imaging and spectroscopy.

The SLR algorithm uses two key concepts: the two-dimensional

mathematical representation of rotations known as SU(2), and the hard pulse



approximation. Rotations in three-dimensional space can ?e described equ.a~ly

well by two distinct representations. The first represent~tlOn uses the faml~lar

3 x 3 orthogonal rotation matrices and 3 x I vectors. ThIS set of 3 x 3 rotatlOn

matrices is said to be the special orthogonal 3D group, or SO(3). The second

representation uses 2 x 2 unitary matrices, and 2 x 1 complex vectors called

spinors (Le Roux 1986; Shinnar and Leigh 1989; Pa~ly et ~l. 1991). The set

of rotation 2 x 2 unitary matrices is said to be the speCIal umtary.2D group,. or

SU(2). Both the SO(3) and SU(2) representations are equally va~ld t.odescnbe

macroscopic rotations such as those experienced by the magnetl~atlOn vector.

The SU(2) representation for rotations is used in the SLR algonthm because

it offers considerable mathematical simplification.
The second key concept of the SLR algorithm is the hard pulse approxi-

mation (Le Roux 1986; Shinnar, Eleff, et al. 1989), which is useful f~r

nonadiabatic pulses and is depicted in Figure 2.5. The hard puls~ approxI-

mation states that any shaped, or soft, pulse B, (t) can be approXImated by

a series of short hard pulses separated by periods of free precession. The

approximation becomes progressively more accurate ~s the ~umber of hard

pulses increases and the duration of the free precess~on penods decreases.

When rotations are described in the SU(2) representatlOn and the hard pulse

approximation is used, the effect of any soft pulse on the magnetizatio~ can

be mathematically described by two polynomials with complex coeffiCIents.

The process that transforms from the RF pulse to the two polynomials is called

the forward SLR transform. It is important that the inverse SLR tr~nsform also

can be calculated. The inverse transform yields the RF pulse, gIven the two

complex polynomials corresponding to the desired magnetization.

In digital signal processing (DSP), these polynomials are filters for which

there are well-established and powerful design tools available. In the SLR

algorithm, the inverse SLR transform is used in conjunction with finite impulse

res~onse (FIR) filter design tools to design RF pulses directly (Shinnar,

Bohnger, et al. 1989b; Pauly et al. 1991).

This section introduces the reader to the main concepts underlying the

SL~ .algorithm: If the reader wants to actively engage in SLR pulse design,

addltlOnal detalls beyond the scope of this section will be required and the

reader is referred to Pauly et al. (1991) the DSP references therein. Several

excellent co.mmercial and shareware software packages for FIR filter design

are also aVailable. (We cannot recommend any particular package here, but if

the reader enters key words such asfilter design, Remez, and Parks-McClellan

into an Internet search engine, several options will appear.)

~otations Rotations in three dimensions can be described equivalently

by eIther the SO(3) or SU(2) representations. In the SO(3) representation, the

familiar 3 x 3 rotation matrices have nine real matrix elements. The matrices

are orthogonal and normalized (often called orthonormal):

where ffiT represents the transpose ofthe matrix ffi and IIis the identity matrix.

Because a general rotation can be completely specified by three free param-

eters (e.g., three Euler angles X, 1jr, and TJ), Eq. (2.7) represents 9 - 3 = 6

constraints.

In the SU(2) representation, a general rotation matrix Q can be written:

[
a -f3*]

Q = f3 a*

where a and f3 are complex numbers known as the Cayley-Klein parameters

and ~he asterisk represents complex conjugation. The matrix Q is unitary;

that IS:

FIGURE 2.5 The hard pulse approximation. A selective or 'soft' RF pulse B, (t) can

be approximated by a series of hard pulses, represented by the vertical lines. The hard

pulses are separated by periods of free precession of duration /'!,.t. As the number. of

hard pulses increases and /'!,.t decreases, the accuracy of the hard pulse approximation

improves.

QQt = QtQ = II (2.9)

where ~t is the Hermitian conjugate or adjoint of Q, which is obtained by

transposmg Q and taking the complex conjugate of each element. Note the

product of unitary matrices is also a unitary matrix. Because the two complex

Cayl~y- Klein parameters a and f3 contain a total of four real numbers, Eq. (2.9)

Contams only 4 - 3 = I constraint. (Again recall that three free parameters are
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by Jaynes (1955) and later adapted in Pauly et al. (1991). Defining the com-

plex transverse magnetization in terms of the x and y components of the

magnetization vector:

required to describe a general rotation.) From Eqs. (2.8) and (2.9), that single

constraint is the normalization condition:

The rotation matrix Q acts on 2 x 1 complex vectors (i.e., the spinors). In the

SLR algorithm, the initial state of the spinor is taken to be:

Ml.. = Mx +iMy

MI = Mx - iMy

so = [~]
2a*f3 ] [Ml..(-)]
2af3* MI (- )

aa* - f3f3* Mz (-)Note that the effect of the unitary rotation matrix in Eq. (2.8) on the initial state

of the spinor is
where a and f3 are the Cayley-Klein parameters. Several important special

cases (Pauly et al. 1991) can be extracted from Equation (2.15). For example,

consider an inversion pulse. Prior to the application of the pulse, assume the

magnetization is entirely aligned with the z axis and is assumed to have its

maximal equilibrium value:
In other words the elements of the spinor are the Cayley-Klein parameters.

Thus, the elements of the spinor satisfy the same normalization constraint that

is given in Eq. (2.10).

The mathematical simplification afforded by the SU(2) representation is

a consequence of the fewer number of constraints implicit in Eq. (2.9) versus

Eq. (2.7) (i.e., one versus six). This situation is analogous to solving a system

of linear equations, where it is nearly always easier to solve fewer equations

with fewer constraints.

Given three Euler angles x, 1/r, and 1], a two-dimensional unitary matrix

can be written for the rotation (Goldstein 1980, Chap. 4):

Ml..(-)=0

Mz(-)=Mo

Substituting Eq. (2.16) into Eq. (2.15), and applying the normalization

condition of Eq. (2.10) yields:

= lei(X+l/f)/2 cos ¥
Q iei(x-l/f)/2 sin!1

2

ie-i(x-l/f)/2 sin ¥l
e-1(x+l/f)/2 cos!1

2

Note that the expression for the inversion slice profile in Eq. (2.17) is a real

quantity, as it must be, even though the individual Cayley-Klein parameters

are complex numbers. Table 2.3 gives several other special cases.

Note the appearance of the half values of the angles in Eq. (2.13), which is

typical in the SU(2) representation. A rotation by 2n (i.e., 1] --+ 1] + 2n)
negates the matrix Q, whereas the same rotation leaves the corresponding

3 x 3 orthogonal rotation matrix ffi unchanged. Thus there is a one-to-one

correspondence between elements of SO(3) and SU(2), that is, between ffi and

the pair (-Q, Q).

Although the SU(2) representation offers some mathematical simplifi-

cation, ultimately the rotation of the magnetization vector occurs in real,

three-dimensional space. A set of rules, or dictionary, that translates between

the SU(2) and the SO(3) representations is required. Those rules were given

The Hard Pulse Approximation and the Forward SLR Transform This

subsection gives an overview of the hard pulse approximation and forward

SLR transform. For more details, the reader is referred to Pauly et al. (1991);

here we mainly follow the notation of that paper.

Recall that a selective, or soft, pulse can be approximated by a series of

hard pulses, separated by periods of free precession (Fig. 2.5). In this way the

net effect of the RF pulse can be approximated by a series of nutations and

free precessions. Each nutation and each precession produces a rotation of the

magnetization vector, which can be described by a unitary rotation matrix in

the SU(2) representation. If relaxation effects are ignored, the net effect of all

the nutations and precessions is a composite rotation that can be described by a



TABLE 2.3

Response of the Magnetization to Commonly used RF Pulse Types in Terms

of the Cayley-Klein Parameters

Initial Condition

(Mx, My, Mz)

Mx = 2MoRe(a,8*)
My = 2Molm(a,8*)
MJ. = 2a,8*

M: = MoO - 21,812)

MJ. = iMo((a*)2 + ,82)

MJ. = iMo,82

FIGURE 2.6 Nutation of the magnetization by the jth hard pulse. Because BI,j can

be complex (i.e., can make any angle C{Jj with respect .to the x a~ls III the rotatlllg

f e) the nutation is described by three Euler angles. FIrst, a rotatIOn about z by the
~ . b h .
Euler angle 1/1 = - C{Jj aligns BI,j with the x axis. Then, a rotation. a ?ut t e x aXIs

by TJ = ej accomplishes the nutation. Finally, BI,j is restored to ItS Illitlal onentatlon

with a rotation about the z axis by X = +C{J j'

Inversion

Refocus (without crushers)

Refocus (with crushers,

which dephase the (a*)2

term giving a voxel

average of 0)

(0,0, Mo)

(0, Mo, 0)

(0, Mo, 0)

single unitary matrix obtained by multiplying the individual rotation matrices

in sequence.

As shown in Figure 2.5, the hard pulses are taken to be a series of spikes

(i.e., delta functions) with adjacent hard pulses separated by a time interval

/:!"t. So that the entire series of hard pulses produces the same flip angle as the

soft pulse, the incremental flip angle produced by the jth hard pulse must be

Again using Eq. (2.13), and assumin.g both /:!,.~ and th~ resona.nt. offset w to

be independent of the index j, the unitary rotatlOn matnx descnbmg any p.re-

cession period is obtained by setting T)= X=0 and 1jJ equal to the precesslOn

angle:

[

eiJ/J/2

((Jlprecession = 0
0] 1/2 [1Z-I/2 = Z 0

The variable z is related to the resonant offset, which is determined by the

gradient G and displacement r from isocenter:

z = exp(i1jJ) = exp(iw/:!,.t) = exp(i2:rrf /:!,.t)= exp(iyG· r/:!,.t) (2.22)

(For spectrally selective pulses in Section 4.3, there is no slice-selection gra.di-

ent, so the last term of Eg. 2.22 does not apply.) If, without loss of generahty,

it is assumed that the free precession precedes the nutation, then the effect of

the first precession and nutation on the initial state given in Eq. (2.11) is:

(Equation 2.18 can be interpreted as approximating the integral under the soft

pulse by a series of rectangles.) The SLR algorithm does not require the RF

field to lie along a single direction in the rotating frame, so 8',j is represented

by a complex value, as discussed in Section 1.2 (hence the absolute value in

Eg. 2.18). If the phase of the RF field in the rotating frame is given by:

then, ej and CPj are related to the three Euler angles by T) = ej, X = -1jJ and

X -1jJ = 2cp j. The rationale behind choosing these values for the Euler angles

is explained in Figure 2.6. Equation (2.13) then provides the unitary matrix

that describes the jth nutation: l
ej . . . el]

cos - te-1qJ1 Sin -
_ . _ 1/2 2 2

sl-((Jlnutation,l(QprecesslonsQ-Z . el e,
ie'qJl sin - cos -

2 2

= 1/2l cos; ] == ZI/2 [CI]
Z '. el SI

ie
tqJ
\ sm-

2l

e·
cos ~

"_ 2
((Jlnulatlon,j - . e.

ie'qJj sin ~
2

. e

J
ie-
tqJj

~n ~

cos ~
2
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From Eqs. (2.12) and (2.27), the two polynomials AN and B N are related

to the Cayley-Klein parameters for the net rotation by:

Equation (2.23) contains the definition of CI and 51, and C} and 5} are defined

analogously. The spinor state after the jth precession can be obtained by

recursion:

AN(Z) = Z-N/2a

BN(Z) = Z-N/2fJ

According to Eq. (2.22), Izi = 1, so the polynomials AN and BN satisfy the

normalization constraint:

At this point, we have demonstrated the forward SLR transform from the RF

pulse to the two polynomials in Eq. (2.27). The resulting magnetization is

found from Eq. (2.30) and the relationships in Table 2.3.

Equation (2.29) provides further insight when used to interpret Table 2.3.

For example, small flip angle excitation pulses satisfy lal ~ I because the

cosines of all the hard pulse flip angles are approximately 1, and the sines

are approximately O. Because the small flip angle response is approximately

proportional to the Fourier transform of the pulse, we can infer that lafJ* I ~
IfJ* I = IfJ I must also be proportional to the magnitude of the Fourier transform

of BI (t). Examining the result for the refocusing pulse (with crushers), we see

that its slice profile is related to the square of the small flip angle excitation

slice profile. This explains, for example, the narrowing of the slice profile of a

SINC pulse used as a refocusing pulse (with crushers) compared to one used

as an excitation pulse (Section 2.2).

s} = z}/2 [A}(Z)]
B}(z)

it can be seen from Eqs. (2.24) and (2.25) that A} (z) and B} (z) are each poly-

nomials of order j - 1 in the variable C I.After the entire RF pulse has been

approximated by N interleaved periods of free precession and hard pulses,

we have:

The Inverse SLR Transform The inverse SLR transform translates from

the two polynomials AN(Z) and BN(Z) back to the jth RF pulse element

BI,}. Like the forward SLR transform, the inverse is calculated recursively.

Inverting Eq. (2.24), and recalling the unitary property of the matrices (i.e.,

Eq. 2.9) yields:

. _ (J-Il/2[A}-I(Z)] _tTl\-1 tTl\-1 .
Sj_1 -z B}_I (z) - 'l£preccssion'l£nutation,} Sj

Note that from Eq. (2.25), the constant term in the polynomial AN is a product

of the cosine terms:

All of the other terms in the polynomial AN contain at least one factor of

5}, each of which is proportional to sinCe}/2) and hence proportional to e}
(because e) « I rad). For small flip angles, all those terms are negligible in

comparison to the constant term, so tTl\t tTl\t .
= 'l£precession'l£nutation.} Sj

Because A} (z) and B} (z) are polynomials of order j - I in C I, the constraint

that their orders must decrease by one power of Z-I for each iteration provides

Sufficient information to calculate their coefficients. As described in detail in

PaUly et al. (1991), that constraint allows the ampl itude and phase of the hard
because C} is equal to cos (~) ~ 1.



YIBI,j j6t = 2 arctan IBj,a I
Aj,a

L(BI,j) = L (-iBj,a)
Aj,a

w~ere A j,a, and Bj,a are the lowest order (i.e., constant) terms of the polyno-

ffilals A j (z) and Bj (z) (note that on the left-hand side of Eq. (2.33) BI,j is the

R~ field streng.th, not to b~ confused with the polynomial B.) By proceeding

with the recursIOn, the entIre hard pulse approximation can be recovered from

the polynomials A and B. This provides the inverse SLR transform.

In practical calculations, for computational efficiency N is usually taken

to be less than the number of the digital points used to ultimately represent the

RF pulse on the MRI scanner. The final high-resolution digital representation

of the pulse is obtained with interpolation (e.g., with cubic splines) of the hard

pUI~e representation. If N is chosen too small, the hard pulse approximation

begms to break down. Typically, N might be chosen to be 20-100 while the

~nal dig.ital resolution of the pulse can be 100-1000 or more, de~ending on

ItS duratIOn and on the details of the digital-to-analog converter (DAC) in the
RF chain.

the finite-width transition band, the passband ripples, and the amplitude in the

passband ("-'0.7) are consistent with Eq. (2.34). .

To perform the inverse SLR transform we also need to determme the poly-

nomial AN (z). There are many possible choices that satisfy the normalization

constraint:

~he Polyno:nials A and B To design an RF pulse, the filter (i.e., poly-

nomIal) BN (z) ISmatched to the desired frequency response. This is done by

a procedure described in Le Roux (1986) and Pauly et al. (1991) and outlined

ne.xt. From Eqs. ~2.8) and (2.13), we note that 1,81 = IBNI = sin(1]/2) where

1] IS the ~et nuta~lOn angle of the pulse. First we generate up an ideal BN (z)

?Olynomlal that IS equal to the sine of one-half the desired flip angle of the

Ideal profile. (Recall that z is related to the spatial coordinates by Eq. 2.22.)

For example, to design a 90° pulse we set the ideal BN (z) equal to ° in the
stopband and equal to the constant value:

The problem of selecting the most physically meaningful filter AN(Z) was

solved by Le Roux (1986), who pointed out that minimum phase AN (z) yields

the pulse that deposits the least amount of RF energy. That choice for the poly-

nomial maximizes its constant term AN,a, which from Eq. (2.29) is equivalent

to minimizing all the flip angles of the hard pulses and hence the total RF

power. Minimum phase polynomials have the property that all of their zeros

(roots) lie within the unit circle; that is, if AN(ZR) = 0, then IZRI < 1. Once

its magnitude has been determined as in Eq. (2.35), the complete polynomial,

including its phase, can be calculated or retrieved with a mathematical tool

called a Hilbert transform (named for David Hilbert, 1862-1943, a German

mathematician), as explained in Pauly et al. (1991).

Once the minimum phase solution is selected for AN (z), there are still

several inputs to be made to the SLR pulse design. The phase of the filter BN (z)

dropped out of Eq. (2.35), but it is a design choice in the Parks-McClellan

algorithm. Minimum, linear, and maximum phases are the most commonly

used. In order to reduce the peak RF power, other phase choices (Shinnar

1994), including quadratic phase, can be used instead. The final RF pulse is

often referred to according to the phase choice of the fiIter BN (z), for example,

a minimum phase pulse. Note that the minimum phase solution is always

used for AN (z), regardless of whether minimum, maximum, or linear phase

solutions are used for BN (z).

(900)sin 2 ~0.707

2.3.2 DESIGN CONSIDERATIONS

The time-bandwidth product (the product of the pulse duration T and

the RF bandwidth 6f) is a dimensionless measure of the selectivity of the

pulse. A highly selective pulse has an abrupt transition from its passband to

its stopband. Because of requirements such as minimum TE or maximum

RF power, the desired slice profile might not be attainable with the T 61
product available for the pulse. Defining W to be the dimensionless width of

the transition band of the response (i.e., W x 61 is the transition width in

hertz), then W is determined by the relation (Pauly et al. 1991):

in the passband. This ideal slice profile cannot be realized with a finite-length

~F pUls~, so a more realistic profile with a finite transition band and ripples

IS used mstead. We can generate the realistic polynomial with the Parks-

McCI~llan algorithm (Oppenheim and Schaeffer 1975, Chap. 5), which is also

so.metImes referred to as the Remez exchange algorithm. Figure 2.8a (later in

thiS chapter) shows an example of the resulting BN(Z) polynomial. Note that
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where Doo is a function of the pulse design parameters. Equation (2.36) allows

the pulse designer to trade off parameters before the pulse is generated. In

Eq. (2.36), Doo can be expressed by a simple function (Pauly et al. 1991) of the

amount of ripple allowed in the passband and the stopband and of the phase type

for the polynomial B. A more selective pulse has a smaller value of W, which

can be accomplished either by increasing the time-bandwidth product T /:>..1
or by changing the pulse design to decrease Doo. Increasing the percentage

of ripple allowed, particularly in the stopband, is an effective way to decrease

Doo. Also, all other things being equal, minimum and maximum phase RF

pulses have smaller values of Doo than linear phase pulses. For example, for

an excitation pulse with T /:>..1 = 8, 1.0% passband ripples, and 0.7% ripples

in the stopband, Doo = 2.037 for the linear phase pulse and Doo = 1.628 for
the minimum phase pulse. Therefore, the transition region W is 20% narrower

for the minimum phase pulse.

Of the phase types discussed, only linear phase pulses produce a phase

dispersion that can be completely rephased with a gradient rephasing lobe.

Thus linear phase pulses are commonly used as spatial excitation pulses for

2D pulse sequences. The isodelay (see Section 3.1) of the linear phase pulse

is equal to one-half its pulse width:

T
/:>..tl =-

2

Linear phase pulses also are widely used as slice refocusing pulses, because

the phase dispersion accumulated during the first and second halves of the

pulse cancel. Figure 2.7 shows an example of a linear phase pulse and its

magnetization response.

Minimum phase pulses are useful in a number of applications because

they have an isodelay that is less than one-half the pulse width:
-5 0 5

Frequency (kHz)

T
/:>..tl < -

2

FIGURE 2.7 Linear phase excitation pulse with a time-bandwidth product of 20, a flip
angle of 45°, and 2% ripple in both the passband (i.e., in-slice) and the stopband (i.e.,

out of slice). (a) RF amplitude versus time. (b) My and Mx (dotted line) responses. The

plot assumes that the optimal rephasing gradient lobe has been applied. Note that Mx

is nearly ° (i.e., the phase across the slice is approximately constant), suggesting that
the linear phase introduced during the pulse is effectively rephased by the rephasing
gradient lobe.

and generally the inequality in Eq. (2.38) becomes more extreme as the time-

bandwidth product increases. Minimum phase pulses are an excellent choice

as excitation pulses for 3D volume gradient echo applications in which it is

important to minimize TE. A drawback of minimum phase pulses is that their

phase dispersion is a nonlinear function of frequency offset and cannot be

completely rephased with a gradient lobe. For 3D acquisitions, however, this

is not a serious problem because the phase dispersion of the slice profile is

distributed across the entire 3D slab, while intravoxel dephasing is determined

by the encoded slice width. In practice, intravoxel phase dispersion due to a

minimum phase pulse will rarely result in more than a 1% signal loss if even

a minimal number (e.g., 16) of slices are phase encoded. Figure 2.8 shows

an example of a minimum phase pulse that could be used as an excitation

pulse for a 3D volume acquisition. Because minimum phase pulses have a

reduced transition width W compared to linear phase pulses (holding T, /:>..1,
and the ripple percentages constant), a minimum phase pulse also makes a

good choice when the phase of the magnetization response is unimportant,

SUchas for inversion pulses.
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can be stored on the MR scanner. Alternatively, the SLR design could be done

in real time when the operator selects the flip angle.

The amount of ripple that is tolerable for the filter BN (z) depends on the

intended function of the pulse. For example, from Table 2.3, a small flip angle

excitation pulse response is linearly related to the Cayley-Klein parameter (3,

and so from Eq. (2.30) it is also proportional to BNC":J. Therefore the amount

of ripple in the filter BN(Z) is equal to the amount ripple in the slice profile.

For a refocusing pulse with crushers, however, there is a quadratic relationship

between f3 and the response. As shown in Pauly et al. (1991), this implies,

for example, that the ripple in the passband of the magnetization response will

be four times larger than the ripple in the passband of the filter. SLR pulses

are always specified by the desired ripple in the magnetization response, and

the conesponding ripple in the filter BN (z) is calculated according to the type

of RF pulse being designed.

The intuitive basis for these types of relations between the ripple in the

response and ripple in the filter can be appreciated by considering a 90° (i.e.,

IT /2) excitation pulse. The magnetization response is proportional to the sine

of the flip angle. Near 90°, the ripples in the passband are attenuated because

the response is second-order in the ripple amplitude t>.e:

(a) IBN(Z)I
,--..-
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0

-10 0 10
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(c)
My. Mx
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FIGURE 2.8 Minimum phase pulse with a time-bandwidth product of 10, a flip angle

of 900, and 0.5% ripple in the passband and the stopband. (a) The filter (polynomial)

BN (z) plotted versus frequency. (b) The RF amplitude versus time. (c) The My and M,

(dotted line) response. (d) Plots of the same response as (c), but this time in terms of

the polar instead of Cartesian components. Note from (b) that the isodelay is much less

than one-half of the pulse duration (T = 2 ms and ~tl = 288 j..ls),and the nonlinear
phase is apparent from (c) (real and imaginary) and (d) (modulu and phase). Also the

ripples apparent on the filter passband are attenuated in the response (d) compared to

(a) because the flip angle is 90°.

(IT) ( (t>.e)2 )
IM-LI = Mo sin "2 + t>.e = Mo cos t>.e = Mo 1- -2- + ...

(2.39)

Consequently, higher amplitude ripples can be designed into the filter's pass-

band. This effect is illustrated in Fig. 2.8. Quantitative relationships between

filter ripple and response ripple for a variety of cases are given in Pauly et al.

(1991). It should be noted, however, that if due to B) inhomogeneity a pulse

intended to be played at 90° (and designed with higher passband ripples) is

actually played at 45° over part of the subject, then the passband ripples can be

unacceptable in that region.

The amount of stopband ripple that can be tolerated also depends on the

~pecific use of the RF pulse. 3D volume excitation pulses tend to be less forgiv-

109 of stopband ripple because the phase encoding process in the slice direction

can cause an unwanted signal from the stopband to alias into the desired slice

locations (see Example 11.9). If, however, the main issue is whether or not the

npples in the stopband will disturb the Z component of off-resonant magnetiza-

tion (e ..g., as with magnetization transfer, chemically selective, or some spatial

saturatIon pulses), then the situation is much more forgiving. The amount of

~ magnetization that remains undisturbed is proportional to cos t>.e, which

rom Eq. (2.39) is second order in t>.e.

Maximum phase pulses can be thought of as time-reversed minimum phase

pulses. Consequently their isodelay is greater than one-half their pulse width.

Maximum phase pulses are sometimes used for spatial or spectral saturation,

where signal dephasing is desirable instead of detrimental.

Pulses designed with the SLR algorithm account for the nonlinearity of

the Bloch equations, but only at a single flip angle. For example, if an SLR

excitation pulse is designed for a flip angle of 45° but played at a flip angle

of 60°, then deviations from the designed profile will begin to emerge. If this

is an important consideration, a set of pulses designed for different flip angles
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FIGURE 2.9 The variable-rate modification to a SINe RF pulse. The original RF

envelope Ao(t) is stretched and attenuated wherever the gradient amplitude is reduced.

The gradient amplitude dips according to the function A(t).

Section 3.1 Excitation Pulses

Section 3.2 Inversion Pulses

Section 3.3 Refocusing Pulses

Section 4.3 Spectrally Selective Pulses

FIGURE 2.10 Whenever the gradient amplitude G(t) is reduced, there is a propor-

tionate reduction in the RF bandwidth /"<,.f and frequency offset of so that the same

slice /"<,.z is produced.A one-dimensional spatially selective RF pulse that is played concurrently

with a time-varying gradient is called a variable-rate (VR) pulse (Conolly

et al. 1988, 1991). VR pulses are also known as variable-rate gradient (VRG)

pulses or variable-rate selective excitation (VERSE) pulses. One main applic-

ation of VR pulses is to reduce RF power deposition to the patient, which is

accomplished by decreasing the RF amplitude in the vicinity of the peak of

the pulse. The peak of the pulse typically contributes the bulk of the power

deposition because the contribution to the SAR from the pulse is proportional

to the square of its B I amplitude. Another application of VR pulses is to play

RF concurrently with the gradient ramps, as is commonly done with spatial

subpulses in a spatial-spectral pulse (Section S.4). Playing RF with the ramps

makes efficient use of the entire time allotted for the slice-selection gradient

lobe, which allows thinner slices or an improvement of the slice profile.

To maintain the nominal flip angle when the RF amplitude is reduced, the

VR pulse is proportionately stretched, or time dilated. This in turn reduces the

instantaneous RF bandwidth (defined later in Section 2.4) of any portion of the

pulse that is stretched. To ensure that the entire VR pulse produces the desired

slice profile, the slice-selection gradient amplitude must be proportionately

reduced whenever the RF pulse is stretched in order to match the reduced RF

bandwidth. Figure 2.9 shows an example of an original and a VR-modified

SINC pulse with a concurrent gradient. Figure 2.10 illustrates how the reduced

RF bandwidth and reduced gradient amplitude work in concert to maintain the

same slice profile.


