EE 202L
Class #3
Last Time …

Series Resistance Adds
- Shared Current
- One Common Node, Only Two Connections

Parallel Conductance Adds
- Shared Voltage
- Two Common Nodes

\[R_{eq} = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2} \]
Voltage Divider

\[v_x = V_s \frac{R_x}{\Sigma R} \]

Current Divider

\[i_x = I_s \frac{G_x}{\Sigma G} \]
Determine \(v_x \)
Linear Circuits (One Source)

Unit-Output Method
- Assign Unity Value to Some Unknown Variable
- Find Consistent Source Value (Mark-Up Method)
- $K = 1 / \text{Source Value}$
- Output $= K \times \text{Actual Source Value}$

Linearity
$$i = K \ V_s + B$$

Power Conserved!
Unit-Output Method Example

\[\begin{align*}
V_s & = 12 \\
K & = 4 \frac{109}{4} \\
v_x & = \frac{12}{K} = \frac{12}{4} = 3
\end{align*} \]
Linear Circuits (Multiple Sources)

Superposition Method

- Turn Off All Sources Except One
- Find Response
- Repeat For Each Source
- Add Results

Linear Circuit

\[i = K_1 V_s + K_2 I_s \]

Linearity

\[I_s = 0 \rightarrow i = K_1 V_s \]
\[V_s = 0 \rightarrow i = K_2 I_s \]
Determine i_x
Superposition Method Example

Voltage Source Off

\[R = 5 + 30 \parallel 15 = 15 \]

\[\begin{align*}
i_y &= 15 \times \frac{1/15}{1/15 + 1/10} = 6 \\
i_x &= 6 \times \frac{1/15}{1/15 + 1/30} = 4
\end{align*} \]
Superposition Method Example

Current Source Off

\[-i_x = \frac{50}{15 + 30 \parallel 15} = 2\]

Complete Response

\[i_x = 4 + (-2) = 2\]
Exercise 1

Determine v_x
Equivalent Source Actions

\[v = V_a - i R \]

\[v = \left(\frac{V_a}{R} - i \right) R \]

\[= V_a - i R \]
Source Substitutions

Do Not Transform Dependent Sources
Source Substitution Example
Source Substitution Example
Put Everything Together

\[v_x = 6 \times \frac{1}{2} = 3 \]
Exercise 2

Determine \(i_x \)
Industry Standard Circuit Analysis Program

- UC Berkeley - 1973 (Fortran)
- PSpice, HSpice, TSpice, …
SPICE Input Options

Statement List

Schematic Capture
General SPICE Format

* Comment
Netlist
Model Statements (Not Needed for EE 202L)
Commands
.end
SPICE Netlist - Assign Nodes

[Electrical circuit diagram with labeled nodes and voltages]
Netlist

V1 1 0 8
R1 1 2 1
R2 2 0 2
V2 3 2 2
R3 3 0 3
I1 2 4 2
R4 2 4 6
V3 4 0 4

Commands

.dc V1 8 8 0.1 (sweep)
.print dc v(2)