Subject to **Negative Feedback** ...

\[v^+ \approx v^- \]

\[v^+ - v^- = \frac{v_{out}}{A_{vd}} \quad A_{vd} \to \infty \]
\[\approx 0 \]

\[i^+ \sim 0 \quad i^- \sim 0 \]

Supply Voltages Bound \(v_{out} \)

\[V^- \leq v_{out} \leq V^+ \]
Determine Node Voltages v_x and v_y
Exercise 1

Build Me

$$V_{out} = ?$$
\[v^+ \text{ (outside)} = 0 \quad \rightarrow \quad v^+ \text{ (inside)} = v_{os} \]
Offset Source and Adjustment

Symmetry?
Put Ice on Me

LM741

V_{os} Variation?

Exercise 2

Variation?
Digital to Analog Conversion

Why?
- Analog World
- Music, Video, Actuators, ...

Given Bits \(b_1, b_2, b_3, \ldots \)

Voltage Reference

Most Significant Bit

\[v_{out} = V_{ref} \left(b_1 2^{-1} + b_2 2^{-2} + b_3 2^{-3} + \ldots \right) \]
3-Bit String DAC

\[b_x = \begin{cases}
 1 & \text{switch closed} \\
 0 & \text{switch open}
\end{cases} \]

Example: 101

\[\frac{5V_{ref}}{8} \]

N Bits:

- **2**\(^N\) Resistors
- **2 x (2**\(^N\) - 1\) Switches

High Speed!
4-Bit Current-Mode DAC

\[\begin{align*}
 &b_x = \begin{cases}
 1 & \text{switch closed} \\
 0 & \text{switch open}
 \end{cases} \\
 &v_{out} = \frac{V_{ref}}{R} \left(2^{-1}b_1 + 2^{-2}b_2 + 2^{-3}b_3 + 2^{-4}b_4 \right)
\end{align*} \]

\[i' = b_1i_1 + b_2i_2 + b_3i_3 + b_4i_4 \]

\[v_{out} = i'R_f \]
Integrated-Circuit Resistors

R Specified in Ohms/Square Ω/\square

Large-Value IC Resistors Are Physically Large (Long)
4-Bit R-2R Current-Mode DAC

\[i_{\text{ref}} = \frac{0 - (-V_{\text{ref}})}{R} \]

\[i_1 = \frac{V_{\text{ref}}}{2R} = i_{x1} \]

\[i_2 = \frac{V_{\text{ref}}}{4R} = i_{x2} \]

\[\text{etc.} \]

N Bits:
2N + 1 Resistors
N Switches
4-Bit R-2R Current-Mode DAC

\[v_{out} = \frac{V_{ref}}{R} \left(2^{-1}b_1 + 2^{-2}b_2 + 2^{-3}b_3 + 2^{-4}b_4 \right)R_f \]

\[i' = b_1i_1 + b_2i_2 + b_3i_3 + b_4i_4 \]

\[b_x = \begin{cases}
1 & \rightarrow \text{virtual ground} \\
0 & \rightarrow \text{ground}
\end{cases} \]
4-Bit R-2R Voltage-Mode DAC

To Op-Amp Amplifier and Output

Example: 0100

\[v_y = V_{ref} \left(\frac{3R \parallel 2R}{3R \parallel 2R + 2R} \right) = \frac{3V_{ref}}{8} \]

\[v_x = v_y \left(\frac{2R}{R + 2R} \right) = \frac{V_{ref}}{4} \]

\[b_x = \begin{cases}
1 & \rightarrow V_{ref} \\
0 & \rightarrow \text{ground}
\end{cases} \]
Offset Error and Gain Error

Both Easily Adjusted to Zero

Offset Error

Gain Error

Digital Input (v_{LSB})

Analog Output (v_{LSB})

offset error

gain error
Non-Adjustable - Critical Specifications

Integral Non-Linearity

Differential Non-Linearity

INL and DNL

Digital Input

Analog Output (v_{LSB})

INL error
At 100

1 LSB

DNL error
at 011
MX7245 Parallel-Input DAC (12 Bits)
MAX5231 Serial-Input DAC (12 Bits)

Offset Adjusts
Table 1. Serial Data Format

<table>
<thead>
<tr>
<th>MSB < 16-bits of serial data > LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Control Bits</td>
</tr>
<tr>
<td>C2..C0</td>
</tr>
</tbody>
</table>

Table 2. Serial-Interface Programming Commands

<table>
<thead>
<tr>
<th>16-BIT SERIAL WORD</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>C1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

X = Don't care.

* S0 must be zero for proper operation.
MAX5231 INL and DNL Data